留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

翼身融合布局机体对发动机进气品质影响

余刚 李栋

余刚,李栋. 翼身融合布局机体对发动机进气品质影响[J]. 机械科学与技术,2024,43(5):911-916 doi: 10.13433/j.cnki.1003-8728.20220281
引用本文: 余刚,李栋. 翼身融合布局机体对发动机进气品质影响[J]. 机械科学与技术,2024,43(5):911-916 doi: 10.13433/j.cnki.1003-8728.20220281
YU Gang, LI Dong. Influence of Airframe on Engine Inlet flow Quality of Blended Wing Body[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 911-916. doi: 10.13433/j.cnki.1003-8728.20220281
Citation: YU Gang, LI Dong. Influence of Airframe on Engine Inlet flow Quality of Blended Wing Body[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 911-916. doi: 10.13433/j.cnki.1003-8728.20220281

翼身融合布局机体对发动机进气品质影响

doi: 10.13433/j.cnki.1003-8728.20220281
基金项目: 湖北省自然科学基金项目(2023AFD033)
详细信息
    作者简介:

    余刚,副教授,博士,yugang@hbuas.edu.cn

  • 中图分类号: V211.3

Influence of Airframe on Engine Inlet flow Quality of Blended Wing Body

  • 摘要: 为评估发动机安装后,机体是否对发动机进气存在不利影响,本文通过数值模拟方法,研究了高低速情况下BWB300机体对发动机进气品质的影响。结果表明:高速情况下,发动机前高速气流能完全满足BWB300进气需求,故BWB300机体不会对发动机进气品质造成明显影响;而低速时,由于发动机进气流量需求大且其前方气流流速低,机体表面若存在流动分离,分离气流会较易被发动机吸入,从而降低其进气品质。故对类似BWB300的上置式发动机布局飞机而言,飞发一体化设计时应避免机体表面流动分离首先发生在发动机位置附近处。
  • 图  1  BWB300模型

    Figure  1.  The model of BWB300

    图  2  BWB300表面网格

    Figure  2.  The surface mesh of BWB300

    图  3  发动机附近表面网格

    Figure  3.  The surface mesh near the engine

    图  4  高速状态不同攻角下BWB300发动机进气口总压恢复系数云图

    Figure  4.  The contour of total pressure recovery coefficient at the inlet of BWB300 engine under different angles of attack at high speed

    图  5  高速状态攻角为7°时BWB300机体表面流线

    Figure  5.  Streamlines on BWB300 surface at high speed with 7° angle of attack

    图  6  高速状态攻角为7°时BWB300发动机进气流线图

    Figure  6.  Intake streamlines of BWB300 engine at high speed with 7° angle of attack

    图  7  巡航状态BWB300发动机安装前后发动机对称面机体表面压力分布图

    Figure  7.  The surface pressure distribution of the BWB300 symmetrical plane with and without the engine in cruise condition

    图  8  巡航状态BWB300发动机对称面处截面进气流线图

    Figure  8.  Intake streamlines at the BWB300 symmetrical plane in cruise condition

    图  9  低速状态不同攻角下BWB300发动机进气口总压恢复系数云图

    Figure  9.  The contour of total pressure recovery coefficient at the inlet of BWB300 engine under different angles of attack at low speed

    图  10  低速状态攻角为9°时BWB300发动机安装前后发动机对称面机体表面压力分布图

    Figure  10.  The surface pressure distribution of the BWB300 symmetrical plane with and without the engine at low speed with 9° angle of attack

    图  11  低速状态攻角为9°时BWB300发动机对称面处截面进气流线图

    Figure  11.  Intake streamlines at the BWB300 symmetrical plane at low speed with 9° angle of attack

    图  12  低速状态攻角为13°时BWB300机体表面流线图

    Figure  12.  Streamlines on BWB300 surface at low speed with 13° angle of attack

    图  13  低速状态攻角为13°时BWB300发动机进气流线图

    Figure  13.  Intake streamlines of BWB300 engine at low speed with 13° angle of attack

    表  1  高低速状态下发动机进出口边界条件

    Table  1.   Engine inlet and outlet boundary conditions under high and low speed states

    状态进气口入口流量/(kg·s−1外涵出口流量/(kg·s−1外涵出口总温/K内涵出口流量/(kg·s−1内涵出口总温/K
    高速418.5377.8281.940.7675.9
    低速1093.7987.8291.9106.0742.1
    下载: 导出CSV
  • [1] AMMAR S, LEGROS C, TRÉPANIER J Y. Conceptual design, performance and stability analysis of a 200 passengers Blended Wing Body aircraft[J]. Aerospace Science and Technology, 2017, 71: 325-336. doi: 10.1016/j.ast.2017.09.037
    [2] 张永杰, 吴莹莹, 金伟, 等. 翼身融合布局民机PRSEUS结构制造工艺研究进展[J]. 南京航空航天大学学报, 2020, 52(1): 24-38. doi: 10.16356/j.1005-2615.2020.01.003

    ZHANG Y J, WU Y Y, JIN W, et al. Research progress on manufacturing technique for PRSEUS structure of hybrid wing body civil aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(1): 24-38. (in Chinese) doi: 10.16356/j.1005-2615.2020.01.003
    [3] 李沛峰, 张彬乾, 陶于金, 等. 翼身融合布局低速风洞试验研究[J]. 航空工程进展, 2019, 10(1): 29-35.

    LI P F, ZHANG B Q, TAO Y J, et al. Low speed wind tunnel test of a blended wing body configuration[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1): 29-35. (in Chinese)
    [4] DEHPANAH P, NEJAT A. The aerodynamic design evaluation of a blended-wing-body configuration[J]. Aerospace Science and Technology, 2015, 43: 96-110. doi: 10.1016/j.ast.2015.02.015
    [5] 夏明, 龚国敬, 黄涛, 等. 考虑客货舱布置约束的BWB机身剖面优化设计[J]. 航空计算技术, 2019, 49(4): 27-30. doi: 10.3969/j.issn.1671-654X.2019.04.007

    XIA M, GONG G J, HUANG T, et al. Optimal design on BWB body profile under cabin and cargo arrangement constraints[J]. Aeronautical Computing Technique, 2019, 49(4): 27-30. (in Chinese) doi: 10.3969/j.issn.1671-654X.2019.04.007
    [6] LU Y, ZHANG S G, ZHANG Z J, et al. Multiple hierarchy risk assessment with hybrid model for safety enhancing of unmanned subscale BWB demonstrator flight test[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2612-2626. doi: 10.1016/j.cja.2019.09.010
    [7] LIU S Q, WHIDBORNE J F, CHUMALEE S. Disturbance observer enhanced neural network LPV control for a blended-wing-body large aircraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2689-2703. doi: 10.1109/TAES.2021.3068429
    [8] 尤延铖, 滕健, 郑晓刚, 等. 航空发动机进气温度畸变研究综述[J]. 南京航空航天大学学报, 2017, 49(3): 283-300.

    YOU Y C, TENG J, ZHENG X G, et al. Review of aero-engine temperature distortion research[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(3): 283-300. (in Chinese)
    [9] 王宝坤, 林山, 张帅, 等. 大涵道比涡扇发动机侧风试验方法研究[J]. 航空发动机, 2020, 46(1): 70-74. doi: 10.13477/j.cnki.aeroengine.2020.01.014

    WANG B K, LIN S, ZHANG S, et al. Study on crosswind test method of high bypass ratio turbofan[J]. Aeroengine, 2020, 46(1): 70-74. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2020.01.014
    [10] CARTER M B, SHEA P R, FLAMM J D, et al. Experimental evaluation of inlet distortion on an ejector powered hybrid wing body at take-off and landing conditions (invited)[C]// 54th AIAA Aerospace Sciences Meeting. San Diego: AIAA, 2016.
    [11] LI J C, DU J, LIU Y, et al. Effect of inlet radial distortion on aerodynamic stability in a multi-stage axial flow compressor[J]. Aerospace Science and Technology, 2020, 105: 105886. doi: 10.1016/j.ast.2020.105886
    [12] 何雪明, 施国江, 武美萍, 等. 双螺杆压缩机CFD分析新方法的研究与应用[J]. 机械科学与技术, 2018, 37(2): 211-219.

    HE X M, SHI G J, WU M P, et al. Exploring and applying a new method of analyzing CFD of twin screw compressor[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(2): 211-219. (in Chinese)
    [13] 乔磊, 白俊强, 华俊, 等. 大涵道比翼吊发动机喷流气动干扰研究[J]. 空气动力学学报, 2014, 32(4): 433-438.

    QIAO L, BAI J Q, HUA J, et al. Interference effects of wing-mounted high bypass ratio nacelle with engine power[J]. Acta Aerodynamica Sinica, 2014, 32(4): 433-438. (in Chinese)
    [14] STANKOWSKI T P, MACMANUS D G, ROBINSON M, et al. Aerodynamic effects of propulsion integration for high bypass ratio engines[J]. Journal of Aircraft, 2017, 54(6): 2270-2284. doi: 10.2514/1.C034150
    [15] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [16] 余刚, 李栋, 张泽宇. 翼身融合布局起飞状态动力效应影响研究[J]. 西北工业大学学报, 2020, 38(2): 231-237. doi: 10.3969/j.issn.1000-2758.2020.02.001

    YU G, LI D, ZHANG Z Y. Simulation on powered effects of BWB at take-off condition[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 231-237. (in Chinese) doi: 10.3969/j.issn.1000-2758.2020.02.001
    [17] 薛帮猛, 张文升, 孙学卫, 等. 动力干扰下宽体客机机翼多目标优化设计[J]. 航空学报, 2019, 40(2): 522381.

    XUE B M, ZHANG W S, SUN X W, et al. Multi-objective wing shape optimization for a wide-body civil aircraft in wing-body-pylon-powered nacelle configuration[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522381. (in Chinese)
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  26
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-19
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回