留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UVW对位平台运动学分析及轨迹规划

黄梦涛 樊鑫锋

黄梦涛,樊鑫锋. UVW对位平台运动学分析及轨迹规划[J]. 机械科学与技术,2024,43(5):874-881 doi: 10.13433/j.cnki.1003-8728.20220275
引用本文: 黄梦涛,樊鑫锋. UVW对位平台运动学分析及轨迹规划[J]. 机械科学与技术,2024,43(5):874-881 doi: 10.13433/j.cnki.1003-8728.20220275
HUANG Mengtao, FAN Xinfeng. Kinematic Analysis of UVW Alignment Platform and Its Trajectory Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 874-881. doi: 10.13433/j.cnki.1003-8728.20220275
Citation: HUANG Mengtao, FAN Xinfeng. Kinematic Analysis of UVW Alignment Platform and Its Trajectory Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 874-881. doi: 10.13433/j.cnki.1003-8728.20220275

UVW对位平台运动学分析及轨迹规划

doi: 10.13433/j.cnki.1003-8728.20220275
基金项目: 陕西省重点研发计划(2019GY-097)与陕西省教育科学“十三五”规划课题 (SGH18H158)
详细信息
    作者简介:

    黄梦涛,教授,硕士生导师,博士,656228336@qq.com

  • 中图分类号: TH692.2

Kinematic Analysis of UVW Alignment Platform and Its Trajectory Planning

  • 摘要: 为控制UVW对位平台匀速运动,对平台做了运动学分析,并针对速度下降问题,设计轨迹规划方案。首先,以自由度为基础建立平台二维平面模型,求解位置正反解公式,分析奇异位形,构建三维工作空间。然后,对常用的同步定速法做轨迹分析,由运动轨迹散点图可知:当旋转角绝对值|θ|增大至15°时,平台运动末端速度与初始速度比值下降为0.935,意味着|θ|增大可降低平台运动速度。最后,结合平台自由度与速度变化规律,设计出等角速度瞬心法。通过对比可知,使用等角速度瞬心法平台运动速度保持恒定,消除了旋转角θ引起的速度下降。
  • 图  1  太阳能电池片视觉对位系统结构图

    Figure  1.  Structural diagram of visual alignment system for solar cell

    图  2  电池片角度及位置偏差示意图

    Figure  2.  Diagram of solar cell angle and position deviation

    图  3  PPR型UVW对位平台结构简图

    Figure  3.  Structural diagram of PPR type UVW alignment platform

    图  4  UVW对位平台平面模型图

    Figure  4.  Plane model of UVW alignment platform

    图  5  对位操作后平台状态

    Figure  5.  Platform status after alignment operation

    图  6  平台三维工作空间及各平面投影图

    Figure  6.  Platform 3D workspace and projection in each relevant plane

    图  7  不同旋转角对应的运动轨迹散点图

    Figure  7.  Scatterplot of motion trajectories corresponding to different rotation angles

    图  8  等角速度瞬心法原理图

    Figure  8.  Principles of equal angular velocity instantaneous centre method

    表  1  平台运动速度变化

    Table  1.   speed changes of platform motion

    对位终点位置(x, y, θ 驱动副U
    移动量u/mm
    驱动副V
    移动量v/mm
    驱动副W
    移动量w/mm
    圆心点P坐标
    x, y)/mm
    同步定速法
    Vc
    等角速度
    瞬心法Vc
    (1 mm, 1 mm, 4°) 9.811 7.811 9.671 (−13.818, 14.818) 0.995 1.000
    (1 mm, 2 mm, 8°) 18.849 15.708 19.427 (−13.801, 8.150) 0.981 1.000
    (1 mm, 3 mm, −8°) −16.989 −20.708 −14.427 (21.951, −5.650) 0.981 1.000
    (1 mm, 2 mm, 14°) 16.594 29.415 32.917 (−7.644, 5.072) 0.943 1.000
    (1 mm, 1 mm, 15°) 34.762 32.762 34.226 (−3.300, 4.300) 0.935 1.000
    下载: 导出CSV
  • [1] 韩冬, 李孟曈, 严正. 用户侧分布式光伏技术扩散能力评估方法[J]. 中国电机工程学报, 2021, 41(3): 985-993. doi: 10.13334/J.0258-8013.PCSEE.191294

    HAN D, LI M T, YAN Z. Evaluation method of diffusion capability of user-side distributed photovoltaic technology[J]. Proceedings of the CSEE, 2021, 41(3): 985-993. (in Chinese) doi: 10.13334/J.0258-8013.PCSEE.191294
    [2] 樊坤, 郭立, 龙辉, 等. 太阳能电池分选设备中视觉对位系统的研制[J]. 电子工艺技术, 2020, 41(3): 170-173. doi: 10.14176/j.issn.1001-3474.2020.03.013

    FAN K, GUO L, LONG H, et al. Development of visual alignment system based on machine vision in solar cells sorting equipment[J]. Electronics Process Technology, 2020, 41(3): 170-173. (in Chinese) doi: 10.14176/j.issn.1001-3474.2020.03.013
    [3] JOUBAIR A, SLAMANI M, BONEV I A. A novel XY-theta precision table and a geometric procedure for its kinematic calibration[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(1): 57-65. doi: 10.1016/j.rcim.2011.06.006
    [4] LI D R, SHIN D. Comparative analysis for kinematics and accuracy for high-precision 3-axis UVW stage[J]. Journal of the Korean Society for Precision Engineering, 2018, 35(9): 867-874. doi: 10.7736/KSPE.2018.35.9.867
    [5] 王薪宇, 秦伟, 孙晓军, 等. 3-PPR并联伺服平台非线性同步鲁棒控制[J]. 中国机械工程, 2020, 31(19): 2269-2275. doi: 10.3969/j.issn.1004-132X.2020.19.001

    WANG X Y, QIN W, SUN X J, et al. Nonlinear synchronous robust control for 3-PPR parallel servo platforms[J]. China Mechanical Engineering, 2020, 31(19): 2269-2275. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.19.001
    [6] 马立, 杨斌, 田应仲, 等. 3-PRR平面三自由度纳米定位平台的设计[J]. 光学 精密工程, 2017, 25(7): 1866-1873.

    MA L, YANG B, TIAN Y Z, et al. Design of 3-DOF planar nano-positioning platform with 3-PRR structure[J]. Optics and Precision Engineering, 2017, 25(7): 1866-1873. (in Chinese)
    [7] 朱大昌, 宋马军. 基于多目标拓扑优化的全柔顺并联机构构型固有振动频率研究[J]. 中国机械工程, 2015, 26(13): 1794-1801. doi: 10.3969/j.issn.1004-132X.2015.13.016

    ZHU D C, SONG M J. Research on natural vibration frequency of fully compliant parallel mechanism configuration based on multi-objective topology optimization[J]. China Mechanical Engineering, 2015, 26(13): 1794-1801. (in Chinese). doi: 10.3969/j.issn.1004-132X.2015.13.016
    [8] 沈瑞超, 郗欣甫, 孙以泽. 三维增材鞋面印花机对位平台的冗余驱动控制策略[J]. 纺织学报, 2020, 41(10): 164-169. doi: 10.13475/j.fzxb.20191104106

    SHEN R C, XI X F, SUN Y Z. Redundant actuation control strategy of positioning platform for 3-D additive printing machine[J]. Journal of Textile Research, 2020, 41(10): 164-169. (in Chinese) doi: 10.13475/j.fzxb.20191104106
    [9] HIJAZI A, BRETHÉ J F, LEFEBVRE D. Singularity analysis of a planar robotic manipulator: application to an XY-theta platform[J]. Mechanism and Machine Theory, 2016, 100: 104-119. doi: 10.1016/j.mechmachtheory.2016.01.011
    [10] 刘大炜, 王立平, 关立文. 一个特殊3自由度并联机构的精度分析及标定[J]. 机械工程学报, 2010, 46(9): 46-51. doi: 10.3901/JME.2010.09.046

    LIU D W, WANG L P, GUAN L W. Accuracy analysis and calibration of a special 3-DOF parallel mechanism[J]. Journal of Mechanical Engineering, 2010, 46(9): 46-51. (in Chinese) doi: 10.3901/JME.2010.09.046
    [11] 陈文均, 尹义贺, 张跃强, 等. 基于垂直双相机的微动平台位姿修正方法研究[J]. 光学学报, 2021, 41(23): 2315001.

    CHEN W J, YIN Y H, ZHANG Y Q, et al. Pose correction method for micro-motion stages based on dual-orthogonal-camera[J]. Acta Optica Sinica, 2021, 41(23): 2315001. (in Chinese)
    [12] WU X Y, XIE Z J, KEPLER J A, et al. A parametric model of 3-PPR planar parallel manipulators for optimum shape design of platforms[J]. Mechanism and Machine Theory, 2017, 118: 139-153. doi: 10.1016/j.mechmachtheory.2017.08.002
    [13] HEPHAIS. XYθ stage (alignment stage)[EB/OL]. (2020-03-10)[2021-12-22]. http://www.hephaist.co.jp/products/system_ali.html

    HEPHAIS. XYθ stage (alignment stage)[EB/OL]. (2020-03-10)[2021-12-22]. http://www.hephaist.co.jp/products/system_ali.html
    [14] 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 2版. 北京: 高等教育出版社, 2014.

    HUANG Z, ZHAO Y S, ZHAO T S. Advanced spatial mechanism[M]. 2nd ed. Beijing: Higher Education Press, 2014. (in Chinese)
    [15] 田海波, 马宏伟, 马琨, 等. 一种三构态变胞并联机构运动学及工作空间分析[J]. 机器人, 2019, 41(3): 414-424. doi: 10.13973/j.cnki.robot.180318

    TIAN H B, MA H W, MA K, et al. Kinematics and workspace analysis of a metamorphic parallel mechanism with three configurations[J]. Robot, 2019, 41(3): 414-424. (in Chinese) doi: 10.13973/j.cnki.robot.180318
    [16] 叶伟, 李秦川, 张克涛. 一种运动部分解耦的2R2T并联机构运动学与性能分析[J]. 农业机械学报, 2019, 50(1): 374-382. doi: 10.6041/j.issn.1000-1298.2019.01.043

    YE W, LI Q C, ZHANG K T. Kinematics and performance analysis of 2R2T parallel manipulator with partially decoupled motion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 374-382. (in Chinese) doi: 10.6041/j.issn.1000-1298.2019.01.043
    [17] 朱伟, 顾开荣, 王传伟, 等. 一种3T1R并联机构设计及运动学性能分析[J]. 中国机械工程, 2018, 29(1): 14-21. doi: 10.3969/j.issn.1004-132X.2018.01.003

    ZHU W, GU K R, WANG C W, et al. Design and kinematics performance analysis of a 3T1R parallel mechanism[J]. China Mechanical Engineering, 2018, 29(1): 14-21. (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.01.003
    [18] 叶鹏达, 尤晶晶, 仇鑫, 等. 并联机器人工作空间的区间离散法[J]. 光学 精密工程, 2021, 29(8): 1847-1856. doi: 10.37188/OPE.20212908.1847

    YE P D, YOU J J, QIU X, et al. Interval discretization method for workspace of parallel robot[J]. Optics and Precision Engineering, 2021, 29(8): 1847-1856. (in Chinese) doi: 10.37188/OPE.20212908.1847
    [19] 徐振邦, 赵智远, 贺帅, 等. 机器人工作空间求解的蒙特卡洛法改进和体积求取[J]. 光学 精密工程, 2018, 26(11): 2703-2713. doi: 10.3788/OPE.20182611.2703

    XU Z B, ZHAO Z Y, HE S, et al. Improvement of Monte Carlo method for robot workspace solution and volume calculation[J]. Optics and Precision Engineering, 2018, 26(11): 2703-2713. (in Chinese) doi: 10.3788/OPE.20182611.2703
    [20] FAN X F, HUANG M T, YANG T, et al. Analysis of the workspace of UVW platform[C]// Proceedings of 2022 2nd International Conference on Control and Intelligent Robotics. Nanjing: ACM, 2022: 344-348.
    [21] 程建, 邹大鹏, 杨志军, 等. UVW对位平台运动轨迹规划及实验[J]. 机床与液压, 2019, 47(8): 146-150. doi: 10.3969/j.issn.1001-3881.2019.08.032

    CHENG J, ZOU D P, YANG Z J, et al. Trajectory planning and experiment of UVW alignment platform mechanism[J]. Machine Tool & Hydraulics, 2019, 47(8): 146-150. (in Chinese) doi: 10.3969/j.issn.1001-3881.2019.08.032
    [22] 康献民, 傅卫平, 王大承, 等. 滚珠丝杠副转速对摩擦力矩波动影响的分析与测试[J]. 中国机械工程, 2010, 21(14): 1664-1668.

    KANG X M, FU W P, WANG D C, et al. Test and analysis of effect of rotating speed on friction torque fluctuation in ball screw systems[J]. China Mechanical Engineering, 2010, 21(14): 1664-1668. (in Chinese)
    [23] 张波涛. 高精密平面并联对位平台及对位控制精度研究[D]. 武汉: 武汉理工大学, 2019.

    ZHANG B T. Research on accuracy of alignment control and high-precision planar parallel alignment platform[D]. Wuhan: Wuhan University of Technology, 2019. (in Chinese)
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  25
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回