留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

米勒循环汽油机燃用氢气燃烧及排放特性分析

吴广权 杜家坤 陈泓 占文锋 高文志 吴威龙

吴广权,杜家坤,陈泓, 等. 米勒循环汽油机燃用氢气燃烧及排放特性分析[J]. 机械科学与技术,2024,43(5):750-755 doi: 10.13433/j.cnki.1003-8728.20220272
引用本文: 吴广权,杜家坤,陈泓, 等. 米勒循环汽油机燃用氢气燃烧及排放特性分析[J]. 机械科学与技术,2024,43(5):750-755 doi: 10.13433/j.cnki.1003-8728.20220272
WU Guangquan, DU Jiakun, CHEN Hong, ZHAN Wenfeng, GAO Wenzhi, WU Weilong. Analyzing Combustion and Emission Characteristics of Miller-cycle Gasoline Engine Fueled with Hydrogen[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 750-755. doi: 10.13433/j.cnki.1003-8728.20220272
Citation: WU Guangquan, DU Jiakun, CHEN Hong, ZHAN Wenfeng, GAO Wenzhi, WU Weilong. Analyzing Combustion and Emission Characteristics of Miller-cycle Gasoline Engine Fueled with Hydrogen[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 750-755. doi: 10.13433/j.cnki.1003-8728.20220272

米勒循环汽油机燃用氢气燃烧及排放特性分析

doi: 10.13433/j.cnki.1003-8728.20220272
基金项目: 国家重点研发计划(2017YFB0103300)
详细信息
    作者简介:

    吴广权,工程师,博士,wuguangquan@gacrnd.com

    通讯作者:

    杜家坤,高级工程师,博士,dujiakun@gacrnd.com

  • 中图分类号: TK411

Analyzing Combustion and Emission Characteristics of Miller-cycle Gasoline Engine Fueled with Hydrogen

  • 摘要: 基于一台高压直喷米勒循环汽油机加装氢气喷射系统,试验研究了发动机燃用汽油与氢气时燃烧与排放的差异。结合电子增压器,通过增大过量空气系数,探索氢气发动机超稀薄燃烧模式热效率潜力,分析了汽油机三效催化转化器对氮氧化物转化效率和NH3的影响规律。结果表明:大负荷工况下氢气发动机对爆震较为敏感,采用稀薄燃烧方式可进一步提升氢气发动机有效热效率水平。2 500 r/min转速条件下,缸内平均有效压力(Brake mean effective pressure, BMEP,记为PBME) = 0.8 MPa时,过量空气系数由1.0增大至3.0时,热效率值增幅可达30%,NOx排放降幅可达约98%,且当负荷进一步提升至PBME = 1.1 MPa时,热效率突破43.0%。传统汽油机TWC对氢发动机NOx转化效率在偏浓工况下相对较高,且在偏浓工况下,TWC后会产生大量氨气,当混合气进一步稀释后NH3生成量显著降低。
  • 图  1  试验台架布置简图

    Figure  1.  Schematic diagram of test bench

    图  2  当量燃烧模式不同负荷工况燃用汽油与氢气热效率对比

    Figure  2.  Comparison of thermal efficiency between gasoline and hydrogen under different load conditions

    图  3  燃用氢气时燃烧特征参数与汽油对比

    Figure  3.  Comparison between combustion characteristics of hydrogen and gasoline

    图  4  不同转速条件下各燃料有效热效率对比

    Figure  4.  Comparison of effective thermal efficiency of various fuels at different speeds

    图  5  氢发动机不同负荷工况下稀燃热效率特征

    Figure  5.  Characteristics of thin burn thermal efficiency of hydrogen engine under different load conditions

    图  6  氢发动机气态排放污染物随过量空气系数变化趋势

    Figure  6.  Variation trend of gaseous emissions of hydrogen engines with the excess air coefficient

    图  7  不同过量空气系数条件下TWC前后氮氧化物排放对比

    Figure  7.  Comparison of NOx emissions before and after TWC at different excess air coefficient

    表  1  发动机技术参数

    Table  1.   Engine parameters

    参数 数值
    形式 三缸、四冲程
    缸径/mm 83
    压缩比 11.3
    行程/mm 92
    排量/L 1.5
    进气方式 废气涡轮增压
    燃料喷射方式 侧置式缸内直喷
    燃油喷射时刻范围/°CA ATDC −280 ~ −310
    下载: 导出CSV
  • [1] BAYKARA S Z. Hydrogen: A brief overview on its sources, production and environmental impact[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10605-10614. doi: 10.1016/j.ijhydene.2021.10.061
    [2] 孙柏刚, 包凌志, 罗庆贺. 缸内直喷氢燃料内燃机技术发展及趋势[J]. 汽车安全与节能学报, 2021, 12(3): 265-278. doi: 10.3969/j.issn.1674-8484.2021.03.001

    SUN B G, BAO L Z, LUO Q H. Development and trends of direct injection hydrogen internal combustion engine technology[J]. Journal of Automotive Safety and Energy, 2021, 12(3): 265-278. (in Chinese) doi: 10.3969/j.issn.1674-8484.2021.03.001
    [3] 纪常伟, 闫皓, 汪硕峰, 等. 进气混氢对汽油机性能的影响[J]. 北京工业大学学报, 2009, 35(5): 659-663. doi: 10.11936/bjutxb2009050659

    JI C W, YAN H, WANG S F, et al. Effect of hydrogen addition to the intake air on gasoline engine performance and emissions[J]. Journal of Beijing University of Technology, 2009, 35(5): 659-663. (in Chinese) doi: 10.11936/bjutxb2009050659
    [4] KIM Y Y, LEE J T, CHOI G H. An investigation on the causes of cycle variation in direct injection hydrogen fueled engines[J]. International Journal of Hydrogen Energy, 2005, 30(1): 69-76. doi: 10.1016/j.ijhydene.2004.03.041
    [5] MOHAMMADI A, SHIOJI M, NAKAI Y, et al. Performance and combustion characteristics of a direct injection SI hydrogen engine[J]. International Journal of Hydrogen Energy, 2007, 32(2): 296-304. doi: 10.1016/j.ijhydene.2006.06.005
    [6] SHIN B, CHO Y, HAN D, et al. Hydrogen effects on NOx emissions and brake thermal efficiency in a diesel engine under low-temperature and heavy-EGR conditions[J]. International Journal of Hydrogen Energy, 2011, 36(10): 6281-6291. doi: 10.1016/j.ijhydene.2011.02.059
    [7] LUO Q H, SUN B G. Inducing factors and frequency of combustion knock in hydrogen internal combustion engines[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16296-16305. doi: 10.1016/j.ijhydene.2016.05.257
    [8] VERHELST S. Recent progress in the use of hydrogen as a fuel for internal combustion engines[J]. International Journal of Hydrogen Energy, 2014, 39(2): 1071-1085. doi: 10.1016/j.ijhydene.2013.10.102
    [9] SUNDARESAN V, SIVASUBRAMANIAN H, CHANDRASEKARAN P, et al. A review on the effects of hydrogen addition on performance, emission and combustion characteristics of the CI engine[J]. International Journal of Engineering Studies, 2017, 9(1): 79-87.
    [10] KIM J, CHUN K M, SONG S, et al. The effects of hydrogen on the combustion, performance and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation[J]. International Journal of Hydrogen Energy, 2017, 42(39): 25074-25087. doi: 10.1016/j.ijhydene.2017.08.097
    [11] 包凌志, 孙柏刚, 汪熙. 直喷氢内燃机实现NO x近零排放的试验研究[J]. 汽车安全与节能学报, 2021, 12(2): 257-264. doi: 10.3969/j.issn.1674-8484.2021.02.015

    BAO L Z, SUN B G, WANG X. Experimental investigation of nearly zero-emission direct injection hydrogen engine[J]. Journal of Automotive Safety and Energy, 2021, 12(2): 257-264. (in Chinese) doi: 10.3969/j.issn.1674-8484.2021.02.015
    [12] LUO Q H, HU J B, SUN B G, et al. Experimental investigation of combustion characteristics and NOx emission of a turbocharged hydrogen internal combustion engine[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5573-5584. doi: 10.1016/j.ijhydene.2018.08.184
    [13] GANESH R H, SUBRAMANIAN V, BALASUBRAMANIAN V, et al. Hydrogen fueled spark ignition engine with electronically controlled manifold injection: An experimental study[J]. Renewable Energy, 2008, 33(6): 1324-1333. doi: 10.1016/j.renene.2007.07.003
    [14] DAS L M. Hydrogen engines: A view of the past and a look into the future[J]. International Journal of Hydrogen Energy, 1990, 15(6): 425-443. doi: 10.1016/0360-3199(90)90200-I
    [15] TAKAGI Y, MORI H, MIHARA Y, et al. Improvement of thermal efficiency and reduction of NOx emissions by burning a controlled jet plume in high-pressure direct-injection hydrogen engines[J]. International Journal of Hydrogen Energy, 2017, 42(41): 26114-26122.
    [16] TAKAGI Y, OIKAWA M, SATO R, et al. Near-zero emissions with high thermal efficiency realized by optimizing jet plume location relative to combustion chamber wall, jet geometry and injection timing in a direct-injection hydrogen engine[J]. International Journal of Hydrogen Energy, 2019, 44(18): 9456-9465. doi: 10.1016/j.ijhydene.2019.02.058
    [17] OIKAWA M, KOJIYA Y, SATO R, et al. Effect of supercharging on improving thermal efficiency and modifying combustion characteristics in lean-burn direct-injection near-zero-emission hydrogen engines[J]. International Journal of Hydrogen Energy, 2022, 47(2): 1319-1327.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  29
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回