留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速摄像在某强冲击试验中的试验弹测速应用研究

刘颖茜 姚小明 李碧波

刘颖茜,姚小明,李碧波. 高速摄像在某强冲击试验中的试验弹测速应用研究[J]. 机械科学与技术,2024,43(5):904-910 doi: 10.13433/j.cnki.1003-8728.20220261
引用本文: 刘颖茜,姚小明,李碧波. 高速摄像在某强冲击试验中的试验弹测速应用研究[J]. 机械科学与技术,2024,43(5):904-910 doi: 10.13433/j.cnki.1003-8728.20220261
LIU Yingxi, YAO Xiaoming, LI Bibo. Research on Velocity Measurement of Projectiles Using High-speed Photography in Strong Impact Test[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 904-910. doi: 10.13433/j.cnki.1003-8728.20220261
Citation: LIU Yingxi, YAO Xiaoming, LI Bibo. Research on Velocity Measurement of Projectiles Using High-speed Photography in Strong Impact Test[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 904-910. doi: 10.13433/j.cnki.1003-8728.20220261

高速摄像在某强冲击试验中的试验弹测速应用研究

doi: 10.13433/j.cnki.1003-8728.20220261
详细信息
    作者简介:

    刘颖茜,硕士,liuyingxi123@163.com

  • 中图分类号: TJ3

Research on Velocity Measurement of Projectiles Using High-speed Photography in Strong Impact Test

  • 摘要: 为了提高强冲击试验的试验弹测速有效性与精度,本文设计了高速摄像试验弹测速方案测量试验弹冲击前的速度。依据试验条件进行了关键设备选型并搭建了高速摄像测速系统,利用有限脉冲响应(Finite impulse response, FIR)滤波器并选取不同滤波器半长进行速度分析计算,通过“四点矫正法”解决了图像倾斜畸变。将测速结果与传统的激光测速结果进行比对,二者测试结果高度吻合(相对误差在0.5%以内)。最后由测速系统分析的3组连续出口速度证明了该强冲击试验系统具备提供稳定速度的能力。
  • 图  1  高速摄像测速系统架构

    Figure  1.  Structure of high-speed photography velocity measurement system

    图  2  现场布置示意图

    Figure  2.  Schematic diagram of the site layout

    图  3  高速摄像测速系统布局俯视图

    Figure  3.  Top view of high-speed photography velocity measurement system layout

    图  4  梯形畸变图像与标准图像对应图

    Figure  4.  Correspondence of trapezoidal distortion images and standard image

    图  5  四点校正

    Figure  5.  4-points correction

    图  6  试验弹出口连续速度分析

    Figure  6.  Continuous velocity analysis of test projectile outlet

    表  1  高速摄像测速系统硬件列表

    Table  1.   Hardware list of high-speed photography velocity measurement system

    序号硬件名称参数
    1高速相机1980 × 1080@9000 帧/s
    传感器尺寸:13.9 mm × 7.8 mm
    最短曝光时间:1 μs
    2镜头焦距50 mm,光圈1.8
    下载: 导出CSV

    表  2  校正前后的速度分析结果

    Table  2.   Velocity analysis results before and after calibration

    序号 时刻/s 未校正瞬时
    速度/(m·s−1
    校正后瞬时
    速度/(m·s−1
    速度偏差/
    (m·s−1
    1 0.42754 215.31 216.64 −1.33
    2 0.42761 214.24 216.81 −2.57
    3 0.42767 213.69 216.79 −3.10
    4 0.42774 213.69 216.97 −3.28
    5 0.4278 213.67 217.08 −3.41
    6 0.42787 213.22 217.25 −4.03
    7 0.42793 212.94 217.50 −4.56
    8 0.42800 212.62 217.68 −5.06
    9 0.42807 212.33 217.85 −5.52
    10 0.42813 211.98 217.97 −5.99
    11 0.42820 211.66 218.17 −6.51
    12 0.42826 211.30 218.29 −6.99
    下载: 导出CSV

    表  3  测速系统试验结果

    Table  3.   Test results of the speed measurement system


    激光测速/
    (m·s−1
    高速摄像测速
    平均速
    度/(m·s−1
    相对
    误差/%
    校正后平均
    速度/(m·s−1
    校正后相
    对误差/%
    1 217.52 206.74 −4.956 217.59 0.032
    2 221.81 203.55 −8.232 222.90 0.492
    3 222.02 205.65 −7.373 221.36 0.297
    4 212.73 200.12 −5.928 213.03 0.141
    5 223.84 212.41 −5.106 223.77 −0.031
    6 225.74 211.53 −6.295 224.96 −0.346
    7 226.54 213.44 −5.783 227.26 0.318
    8 230.86 221.79 −3.929 231.20 0.147
    下载: 导出CSV
  • [1] 王蓬康, 高阁, 王斌, 等. 强冲击试验方法研究[J]. 测试技术学报, 2013, 27(6): 535-542.

    WANG P K, GAO G, WANG B, et al. Research on strong impact test method[J]. Journal of Test and Measurement Technology, 2013, 27(6): 535-542. (in Chinese)
    [2] 熊国基, 卢安喜. 气动式强冲击高能过载环境试验设备模型设计[J]. 工程与试验, 2018, 58(4): 67-71.

    XIONG G J, LU A X. Model design of pneumatic strong impact and high energy overload environmental test equipment[J]. Engineering & Test, 2018, 58(4): 67-71. (in Chinese)
    [3] 赵奇峰, 李进, 李运良, 等. 基于高速摄影图像的轻气炮弹速测量研究[J]. 计算机测量与控制, 2021, 29(11): 132-136.

    ZHAO Q F, LI J, LI Y L, et al. Study on velocity measurement of light gas projectile based on high speed photographic images[J]. Computer Measurement & Control, 2021, 29(11): 132-136. (in Chinese)
    [4] 邓云飞. 二级轻气炮超高速撞击实验测控系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    DENG Y F. Research of measurement and control system in two-stage light gas gun hypervelocity impact experiment[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
    [5] 褚波. 高速气炮撞击实验测控系统设计与实现[D]. 南京: 南京理工大学, 2013.

    CHU B. Design and implementation of measurement and control system for high speed gas gun impact experiment[D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)
    [6] SAITO F, USUI T, TAMURA H, et al. Improvement of a "mini" two-stage light-gas gun for hypervelocity impact experiments: Technical devices to accelerate and detect a "minute" projectile efficiently[J]. Review of Scientific Instruments, 2005, 76(5): 055107. doi: 10.1063/1.1897646
    [7] 李进, 李运良, 钱秉文, 等. 用于三级轻气炮弹速测量的改进型激光测速系统[J]. 兵工学报, 2017, 38(S1): 146-149.

    LI J, LI Y L, QIAN B W, et al. Improved laser velocity-measuring system for measuring the projectile velocity of three-stage light-gas gun[J]. Acta Armamentarii, 2017, 38(S1): 146-149. (in Chinese)
    [8] 禄晓飞, 易成龙, 邹卫科, 等. 光幕靶破片速度测量方法及误差分析[J]. 现代防御技术, 2021, 49(1): 84-90.

    LU X F, YI C L, ZOU W K, et al. Measurement method and error analysis of light screen target[J]. Modern Defense Technology, 2021, 49(1): 84-90. (in Chinese)
    [9] 段中兴, 杨琪凡, 李进, 等. 用于轻气炮弹速测量的新型高信噪比激光测速系统[J]. 电子测量与仪器学报, 2021, 35(5): 154-160.

    DUAN Z X, YANG Q F, LI J, et al. New laser projectile velocity-measuring system with high SNR for light-gas gun[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(5): 154-160. (in Chinese)
    [10] 汤雪志, 王志军, 尹建平, 等. 弹丸速度测量的高速摄影试验研究[J]. 兵器装备工程学报, 2017, 38(12): 167-170.

    TANG X Z, WANG Z J, YIN J P. Experimental study on velocity measurement of projectile by high speed photography[J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 167-170. (in Chinese)
    [11] 刘泽庆, 张玉荣, 赵建新, 等. 基于数字摄影测量的靶场高速摄影测速方法[J]. 弹道学报, 2015, 27(4): 47-51.

    LIU Z Q, ZHANG Y R, ZHAO J X, et al. High-speed photography velocity measurement in range based on digital photogrammetry[J]. Journal of Ballistics, 2015, 27(4): 47-51. (in Chinese)
    [12] 刘雨曦, 任鹏, 拾路. 弹体低速撞击下蓄液结构毁伤特性研究[J]. 振动与冲击, 2018, 37(15): 84-89.

    LIU Y X, REN P, SHI L. Damage characteristics of liquid-filled tanks impacted by low speed projectiles[J]. Journal of Vibration and Shock, 2018, 37(15): 84-89. (in Chinese)
    [13] TEXAS Instruments. TMS320C6474 Serial Rapid IO (SRIO) User's Guide. [EB/OL]. [2021-09-03]. https://www.ti.com/lit/pdf/sprug23.
    [14] TEMA User's Guide. Image systems AB[R]. SE-582 26, Linköping, 2017.
    [15] 蒋林, 葛中芹, 杨旭, 等. 基于FPGA的高阶组合结构FIR数字滤波器设计[J]. 实验室科学, 2021, 24(3): 72-77.

    JIANG L, GE Z Q, YANG X, et al. Design of high order mixed architecture FIR digital filter based on FPGA[J]. Laboratory Science, 2021, 24(3): 72-77. (in Chinese)
    [16] 向芝慧. 基于Harris算法的梯形畸变校正快速视频拼接技术研究[D]. 成都: 西南交通大学, 2018.

    XIANG Z H. Research on fast video splicing with trapezoidal distortion correction based on Harris algorithm[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [17] 索军红, 张冠茂, 乔鑫, 等. 基于FPGA的自适应实时视频梯形矫正系统设计与实现[J]. 液晶与显示, 2022, 37(1): 97-105. doi: 10.37188/CJLCD.2021-0170

    SUO J H, ZHANG G M, QIAO X, et al. Adaptive real-time video trapezoidal correction system design and implementation based on FPGA[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(1): 97-105. (in Chinese) doi: 10.37188/CJLCD.2021-0170
    [18] 王正家, 钱峰, 柯楠, 等. 两步式鱼眼图像畸变校正方法研究[J]. 现代电子技术, 2020, 43(18): 146-149.

    WANG Z J, QIAN F, KE N, et al. Research on two-step distortion correction method for fisheye image[J]. Modern Electronics Technique, 2020, 43(18): 146-149. (in Chinese)
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  24
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回