留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用黏-弹-塑性模型对磁流变阻尼器动力学性能预测与分析

罗肖培

罗肖培. 利用黏-弹-塑性模型对磁流变阻尼器动力学性能预测与分析[J]. 机械科学与技术,2024,43(5):798-804 doi: 10.13433/j.cnki.1003-8728.20220254
引用本文: 罗肖培. 利用黏-弹-塑性模型对磁流变阻尼器动力学性能预测与分析[J]. 机械科学与技术,2024,43(5):798-804 doi: 10.13433/j.cnki.1003-8728.20220254
LUO Xiaopei. Prediction and Analysis of Dynamic Performance of Magnetorheological Damper with Visco-elasto-plastic Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 798-804. doi: 10.13433/j.cnki.1003-8728.20220254
Citation: LUO Xiaopei. Prediction and Analysis of Dynamic Performance of Magnetorheological Damper with Visco-elasto-plastic Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 798-804. doi: 10.13433/j.cnki.1003-8728.20220254

利用黏-弹-塑性模型对磁流变阻尼器动力学性能预测与分析

doi: 10.13433/j.cnki.1003-8728.20220254
基金项目: 国家自然科学基金项目(5167050237)
详细信息
    作者简介:

    罗肖培,讲师,568408584@qq.com

  • 中图分类号: TB381

Prediction and Analysis of Dynamic Performance of Magnetorheological Damper with Visco-elasto-plastic Model

  • 摘要: 为了建模合适的参数模型来描述阻尼器的动态输出特性,发挥磁流变阻尼器工程应用中的半主动控制优势。本文的研究在激励频率和振幅为5 Hz和10 mm条件下,利用振动系统测试磁流变阻尼器在不同激励电流下得到动态输出特性,在此基础上利用黏-弹-塑性参数模型,采用果蝇优化算法对所有电流下的实测结果进行预测并对其结果展开分析讨论。研究结果表明该阻尼器的输出力能够跟随外部位移随时间变化情况;阻尼力随激励电流增大表现出先缓慢增大后显著增大的特性,这表明该阻尼器具有依赖输入电流的可控性,为实现工程应用中的半主动控制提供条件。并讨论了产生这种现象的原因在于不同电流下颗粒于基体间的相互作用。预测结果表明利用果蝇优化算法,黏-弹-塑性参数模型能够很好的描述实测结果。
  • 图  1  磁流变阻尼器的结构示意图

    Figure  1.  Structural schematic diagram of magnetorheological damper

    图  2  磁流变阻尼器动态性能测试

    Figure  2.  Dynamic performance testing of magnetorheological damper

    图  3  不同电流激励下阻尼力-时间特性曲线

    Figure  3.  Damping force and time characteristic curve under different current excitations

    图  4  在激励频率为5 Hz、振幅为10 mm下磁流变阻尼器特性曲线

    Figure  4.  Characteristic curves of magnetorheological damper at an excitation frequency of 5 Hz and an amplitude of 10 mm

    图  5  阻尼力可调范围与激励电流的关系

    Figure  5.  Relationship between adjustable range of resistance force and excitation current

    图  6  黏-弹-塑性模型

    Figure  6.  Visco elastic plastic model

    图  7  果蝇优化算法

    Figure  7.  Drosophila optimization algorithm

    图  8  模型预测与实验数据的比较

    Figure  8.  Comparison between model prediction and experimental data

    表  1  磁流变阻尼器主要尺寸

    Table  1.   Main dimensions of magnetorheological damper

    参数 阻尼器总长 阻尼器直径 阻尼间隙 行程
    尺寸/mm 308 50 1 10
    下载: 导出CSV
  • [1] 徐明, 黄庆生, 李刚. 车辆磁流变半主动悬架滑模变结构优化控制[J]. 机械科学与技术, 2021, 40(7): 1106-1113.

    XU M, HUANG Q S, LI G. Sliding mode variable structure optimization control of vehicle magneto-rheological semi-active suspension[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1106-1113. (in Chinese)
    [2] 陈文, 吴张永. 导磁型径向流磁流变阀的结构优化及性能研究[J]. 机械科学与技术, 2021, 40(3): 448-455.

    CHEN W, WU Z Y. Exploring structural optimization and performance of magnetic flux type radial flow magnetorheological valve[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 448-455. (in Chinese)
    [3] LI Y Q, SU Z B, LUO Y P, et al. Study on the friction and wear properties of magnetorheological fluids based on different lubricant formulas[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(3): 943-950. doi: 10.1007/s10948-020-05797-4
    [4] 闫敏杰, 蒙恺悦, 武志杰, 等. 基于聚α-烯烃合成润滑油的复合锂基磁流变脂流变特性[J]. 机械工程材料, 2021, 45(8): 20-24.

    YAN M J, MENG K Y, WU Z J, et al. Rheological Property of composite lithium based magnetorheological grease based on poly-alpha olefin synthetic base oil[J]. Materials for Mechanical Engineering, 2021, 45(8): 20-24. (in Chinese)
    [5] SINGH A, THAKUR M K, SARKAR C. Design and development of a wedge shaped magnetorheological clutch[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234(9): 1252-1266.
    [6] 郭迎庆, 周敏, 吴景, 等. 基于遗传算法优化的磁流变减震结构模糊控制研究[J]. 应用力学学报, 2020, 37(4): 1500-1507.

    GUO Y Q, ZHOU M, WU J, et al. Study on fuzzy control of magneto-rheological structure based on genetic algorithm optimization[J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1500-1507. (in Chinese)
    [7] HEMANTH K, KUMAR H, GANGADHARAN K V. Dynamic analysis of half car model with MR damper as semi-active suspension element[J]. International Journal of Acoustics and Vibrations, 2018, 23(2): 138-146.
    [8] 胡国良, 刘前结, 李刚, 等. 磁流变阻尼器参数对车辆悬架减振效果的影响[J]. 机械科学与技术, 2018, 37(6): 930-936.

    HU G L, LIU Q J, LI G, et al. Influence of magnetorheological damper parameters on vibration attenuation effects for vehicle suspension system[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 930-936. (in Chinese)
    [9] WANG X L, HAO W J, LI G F. Study on magnetorheological fluid damper[J]. Applied Mechanics and Materials, 2013, 405-408: 1153-1156. doi: 10.4028/www.scientific.net/AMM.405-408.1153
    [10] ROSLI R, MOHAMED Z. Optimization of modified Bouc–Wen model for magnetorheological damper using modified cuckoo search algorithm[J]. Journal of Vibration and Control, 2020, 27(17-18): 107754632095138.
    [11] 李潘玉, 游世辉, 李维, 等. 磁流变弹性体基声子晶体的弹性波可调拓扑传输研究[J]. 振动与冲击, 2021, 40(21): 16-24. doi: 10.13465/j.cnki.jvs.2021.21.003

    LI P Y, YOU S H, LI W, et al. Adjustable topological transmission of elastic waves in MR elastic matrix-based phonon crystals[J]. Journal of Vibration and Shock, 2021, 40(21): 16-24. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.21.003
    [12] HAN C, KIM B G, KANG B H, et al. Effects of magnetic core parameters on landing stability and efficiency of magnetorheological damper-based landing gear system[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(2): 198-208. doi: 10.1177/1045389X19862639
    [13] 李延成, 王炅, 钱林方. 冲击载荷下磁流变减振器的动态特性研究[J]. 弹箭与制导学报, 2005, 25(3): 592-594. doi: 10.3969/j.issn.1673-9728.2005.03.190

    LI Y C, WANG J, QIAN L F. Dynamic characteristics of the magneto-rheological shock absorber under impact load[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(3): 592-594. (in Chinese) doi: 10.3969/j.issn.1673-9728.2005.03.190
    [14] NGUYEN Q H, CHOI S B, LEE Y S, et al. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths[J]. Smart Materials and Structures, 2013, 22(11): 115024. doi: 10.1088/0964-1726/22/11/115024
    [15] ZHANG X J, LI Z H, GUO K H, et al. A novel pumping magnetorheological damper: design, optimization, and evaluation[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(17): 2339-2348. doi: 10.1177/1045389X17689937
    [16] PATEL J D, PATEL D. Design optimization of squeeze mode magnetorheological damper[J]. Applied Mechanics and Materials, 2018, 877: 391-396. doi: 10.4028/www.scientific.net/AMM.877.391
    [17] NIE S L, XIN D K, JI H, et al. Optimization and performance analysis of magnetorheological fluid damper considering different piston configurations[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(5): 764-777. doi: 10.1177/1045389X19828526
    [18] HU G L, LONG M, YU L F, et al. Design and performance evaluation of a novel magnetorheological valve with a tunable resistance gap[J]. Smart Materials and Structures, 2014, 23(12): 127001. doi: 10.1088/0964-1726/23/12/127001
    [19] LU J Z, GAO S H, XIONG W J, et al. Optimization of GPU parallel scheme for simulating ultrafast magnetization dynamics model[J]. Computational Materials Science, 2020, 184: 109924. doi: 10.1016/j.commatsci.2020.109924
    [20] GURUBASAVARAJU T M, KUMAR H, ARUN M. Optimisation of monotube magnetorheological damper under shear mode[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(6): 2225-2240. doi: 10.1007/s40430-017-0709-9
    [21] NANTHAKUMAR A J D, JANCIRANI J. Design optimization of magnetorheological damper geometry using response surface method for achieving maximum yield stress[J]. Journal of Mechanical Science and Technology, 2019, 33(9): 4319-4329. doi: 10.1007/s12206-019-0828-6
    [22] NASERIMOJARAD M M, MOALLEM M, ARZANPOUR S. A comprehensive approach for optimal design of magnetorheological dampers[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(18): 3648-3655. doi: 10.1177/1045389X18798947
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  17
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回