留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准零刚度隔振平台的冲击响应及能量分析

刘彦琦 顾黄森 宋春芳 汪新 邓二杰 王友会

刘彦琦, 顾黄森, 宋春芳, 汪新, 邓二杰, 王友会. 准零刚度隔振平台的冲击响应及能量分析[J]. 机械科学与技术, 2024, 43(1): 16-22. doi: 10.13433/j.cnki.1003-8728.20220197
引用本文: 刘彦琦, 顾黄森, 宋春芳, 汪新, 邓二杰, 王友会. 准零刚度隔振平台的冲击响应及能量分析[J]. 机械科学与技术, 2024, 43(1): 16-22. doi: 10.13433/j.cnki.1003-8728.20220197
LIU Yanqi, GU Huangsen, SONG Chunfang, WANG Xin, DENG Erjie, WANG Youhui. Shock Response and Energy Analysis of Quasi-zero Stiffness Vibration Isolation Platform[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 16-22. doi: 10.13433/j.cnki.1003-8728.20220197
Citation: LIU Yanqi, GU Huangsen, SONG Chunfang, WANG Xin, DENG Erjie, WANG Youhui. Shock Response and Energy Analysis of Quasi-zero Stiffness Vibration Isolation Platform[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 16-22. doi: 10.13433/j.cnki.1003-8728.20220197

准零刚度隔振平台的冲击响应及能量分析

doi: 10.13433/j.cnki.1003-8728.20220197
基金项目: 

北京市自然科学基金项目 1182010

北京市西城区优秀人才培养拔尖团队项目及轨道交通基础设施性能监测与保障国家重点实验室开放课题 HJGZ2021101

详细信息
    作者简介:

    刘彦琦, 正高级工程师, jdyqliu@163.com

    通讯作者:

    宋春芳, 教授, 博士生导师, songcf@jiangnan.edu.cn

  • 中图分类号: O328

Shock Response and Energy Analysis of Quasi-zero Stiffness Vibration Isolation Platform

  • 摘要: 本文对准零刚度(Quasi-zero stiffness, QZS)隔振平台进行了冲击响应及能量分析,详细分析了系统的时域冲击响应以及系统能量损耗特性。首先建立了冲击激励下系统的非线性动力学方程,数值分析了QZS隔振平台系统的时域冲击响应,并与相应的线性系统进行对比分析。之后以系统能量损耗速度作为系统缓冲性能的评价指标,分析了阻尼及结构参数对系统缓冲性能的影响。研究表明:QZS系统的位移响应幅值高于相应的线性系统,但QZS隔振系统位移响应的衰减速度快于线性系统,衰减所需的周期数少于线性系统。另外,阻尼有助于提高系统的缓冲效果,刚度比和倾斜角并不会对系统缓冲性能造成较大影响。
  • 图  1  准零刚度隔振平台结构示意图

    Figure  1.  Structural sketch of quasi-zero stiffness vibration isolation platform

    图  2  碟形弹簧结构示意图

    Figure  2.  Structure sketch of disc spring

    图  3  锥形支柱受力分析图

    Figure  3.  Force analysis diagram of conical prop

    图  4  系统冲击位移响应

    Figure  4.  Shock displacement response spectrum of system

    图  5  不同阻尼下系统位移响应

    Figure  5.  Displacement response of system with different damping

    图  6  不同阻尼下系统的能量损耗占比曲线

    Figure  6.  Energy loss ratio curve of system with different damping

    图  7  不同刚度比λ下系统能量损耗占比曲线

    Figure  7.  Energy loss ratio curve of system under different stiffness ratio λ

    图  8  不同倾斜角φ下系统的能量损耗占比曲线

    Figure  8.  Energy loss ratio curve of the system at different inclination angles φ

    表  1  隔振平台及初始运动参数

    Table  1.   Vibration isolation platform and initial motion parameters

    参数 数值 参数 数值 参数 数值
    φ π/6 vx 0.166 7 vθx 6.67×10-3
    λ 1 vy 0.166 7 vθy 4.166 7×10-4
    l1 200 vz 0.027 8 vθz 1.6x10-3
    l2 400 ζi(i=1~6) 0.1
    下载: 导出CSV
  • [1] IBRAHIM R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration, 2008, 314(3-5): 371-452. doi: 10.1016/j.jsv.2008.01.014
    [2] CHANG Y P, ZHOU J X, WANG K, et al. Theoretical and experimental investigations on semi-active quasi-zero-stiffness dynamic vibration absorber[J]. International Journal of Mechanical Sciences, 2022, 214: 106892. doi: 10.1016/j.ijmecsci.2021.106892
    [3] XIONG Y H, LI F M, WANG Y. A nonlinear quasi-zero- stiffness vibration isolation system with additional X-shaped structure: Theory and experiment[J]. Mechanical Systems and Signal Processing, 2022, 177: 109208. doi: 10.1016/j.ymssp.2022.109208
    [4] LIU Y Q, XU L L, SONG C F, et al. Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping[J]. Archive of Applied Mechanics, 2019, 89(9): 1743-1759. doi: 10.1007/s00419-019-01541-0
    [5] HAO R B, LU Z Q, DING H, et al. Orthogonal six- DOFs vibration isolation with tunable high-static-low-dynamic stiffness: Experiment and analysis[J]. International Journal of Mechanical Sciences, 2022, 222: 107237. doi: 10.1016/j.ijmecsci.2022.107237
    [6] 刘彦琦, 徐龙龙, 顾黄森, 等. 耦合吸振器的正负刚度并联系统的隔振性能研究[J]. 振动与冲击, 2020, 39(13): 207-214.

    LIU Y Q, XU L L, GU H S, et al. Isolation performance of a positive and negative stiffness parallel system of coupled absorber[J]. Journal of Vibration and Shock, 2020, 39(13): 207-214. (in Chinese)
    [7] 姚国, 于永恒, 张义民, 等. X型准零刚度隔振器的隔振特性分析[J]. 东北大学学报(自然科学版), 2020, 41(5): 662-666.

    YAO G, YU Y Y, ZHANG Y M, et al. Vibration isolation characteristics analysis of X-shaped quasi-zero stiffness vibration isolator[J]. Journal of Northeastern University (Natural Science), 2020, 41(5): 662-666. (in Chinese)
    [8] 赵权, 李韶华, 冯桂珍. 一种准零刚度车载隔振系统的设计与试验研究[J]. 振动与冲击, 2021, 40(6): 55-63.

    ZHAO Q, LI S H, FENG G Z. Design and test of a quasi-zero-stiffness vehicle vibration isolation system[J]. Journal of Vibration and Shock, 2021, 40(6): 55-63. (in Chinese)
    [9] 任晨辉, 杨德庆. 船用新型多层负刚度冲击隔离器性能分析[J]. 振动与冲击, 2018, 37(20): 81-87.

    REN C H, YANG D Q. Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure[J]. Journal of Vibration and Shock, 2018, 37(20): 81-87. (in Chinese)
    [10] TANG B, BRENNAN M J. On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2014, 81: 207-214. doi: 10.1016/j.ijmecsci.2014.02.019
    [11] 高鹏, 闫明, 温肇东, 等. 八连杆抗冲击隔离器设计与性能分析[J]. 振动与冲击, 2019, 38(9): 231-237.

    GAO P, YAN M, WEN Z D, et al. Design and performance analysis for a 8-1ink shock isolator[J]. Journal of Vibration and Shock, 2019, 38(9): 231-237. (in Chinese)
    [12] LEDEZMA-RAMIREZ D F, FERGUSON N S, BRENNAN M J, et al. An experimental nonlinear low dynamic stiffness device for shock isolation[J]. Journal of Sound and Vibration, 2015, 347: 1-13. doi: 10.1016/j.jsv.2015.02.006
    [13] SHEKHAR N C, HATWAL H, MALLIK A K. Performance of non-linear isolators and absorbers to shock excitations[J]. Journal of Sound and Vibration, 1999, ;27(2): 293-307.
    [14] YAN B, MA H Y, ZHANG L, et al. Electromagnetic shunt damping for shock isolation of nonlinear vibration isolators[J]. Journal of Sound and Vibration, 2020, 479: 115370. doi: 10.1016/j.jsv.2020.115370
    [15] HUANG X C, HEN Y, HUA H X, et al. Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: Theoretical and experimental study[J]. Journal of Sound and Vibration, 2015, 345: 178-196. doi: 10.1016/j.jsv.2015.02.001
    [16] 宋春芳, 顾黄森, 刘彦琦, 等. 准零刚度隔振床静态特性分析[J]. 应用力学学报, 2020, 37(5): 2127-2133.

    SONG C F, GU H S, LIU Y Q, et al. Static analysis of quasi-zero stiffness vibration isolation bed[J]. Chinese Journal of Applied Mechanics, 2020, 37(5): 2127-2133. (in Chinese)
    [17] 陆文遂. 碟形弹簧的计算、设计与制造[M]. 上海: 复旦大学出版社, 1990.

    LU W S. Calculation of disc spring, Design and manufacturing[M]. Shanghai: Fudan University Press, 1990. (in Chinese)
    [18] 易先中, 张传友, 严泽生. 碟形弹簧的力学特性参数研究[J]. 长江大学学报(自然科学版), 2007, 4(4): 99-101.

    YI X Z, ZHANG C Y, YAN Z S. Research on mechanical properties of dish spring[J]. Journal of Yangtze University (Natural Science Edition), 2007, 4(4): 99-101. (in Chinese)
    [19] 王朝晖, 王晓丽. 碟形弹簧弹塑性有限元分析研究[J]. 航天制造技术, 2018(2): 19-22.

    WANG Z H, WANG X L. Elastoplastic finite element analysis of disc spring[J]. Aerospace Manufacturing Technology, 2018(2): 19-22. (in Chinese)
    [20] HARRIS C M, PIERSOL A G东. 冲击与振动手册[M]. 刘树林, 王金东, 李凤明, 等, 译. 北京: 中国石化出版社, 2008.

    HARRIS C M, PIERSOL A G. Harris' shock and vibration handbook[M]. LIU S L, WANG J D, LI F M, et al, trans. Beijing: China Petrochemical Press, 2008. (in Chinese)
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  44
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回