留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光加工高频挠性板基材微孔研究

陆慧娟 欧卓东 黄兵 黄欣 王成勇 郑李娟

陆慧娟, 欧卓东, 黄兵, 黄欣, 王成勇, 郑李娟. 飞秒激光加工高频挠性板基材微孔研究[J]. 机械科学与技术, 2022, 41(8): 1224-1230. doi: 10.13433/j.cnki.1003-8728.20220151
引用本文: 陆慧娟, 欧卓东, 黄兵, 黄欣, 王成勇, 郑李娟. 飞秒激光加工高频挠性板基材微孔研究[J]. 机械科学与技术, 2022, 41(8): 1224-1230. doi: 10.13433/j.cnki.1003-8728.20220151
LU Huijuan, OU Zhuodong, HUANG Bing, HUANG Xin, WANG Chengyong, ZHENG Lijuan. Study on Micro-holes Processing of High Frequency Flexible Copper Clad Laminate Substrate via Femtosecond Laser[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1224-1230. doi: 10.13433/j.cnki.1003-8728.20220151
Citation: LU Huijuan, OU Zhuodong, HUANG Bing, HUANG Xin, WANG Chengyong, ZHENG Lijuan. Study on Micro-holes Processing of High Frequency Flexible Copper Clad Laminate Substrate via Femtosecond Laser[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1224-1230. doi: 10.13433/j.cnki.1003-8728.20220151

飞秒激光加工高频挠性板基材微孔研究

doi: 10.13433/j.cnki.1003-8728.20220151
基金项目: 

国家自然科学基金优秀青年基金项目 52122510

详细信息
    作者简介:

    陆慧娟(1996-), 硕士研究生, 研究方向为挠性板激光加工, 526816971@qq.com

    通讯作者:

    郑李娟, 教授, 博士生导师, zhenglijuan@gdut.edu.cn

  • 中图分类号: TH16

Study on Micro-holes Processing of High Frequency Flexible Copper Clad Laminate Substrate via Femtosecond Laser

  • 摘要: 为解决目前激光加工挠性覆铜板(简称挠性板)微孔存在的加工精度差、孔型差及热损伤大等问题,探索了飞秒激光加工高频挠性板基材-改性聚酰亚胺(MPI)微孔的材料去除过程及其加工质量。采用飞秒激光进行了改性聚酰亚胺微孔加工实验,使用热重-红外联用系统分析了改性聚酰亚胺材料热解机理,并利用激光共聚焦显微镜、场发射扫描电镜对改性聚酰亚胺微孔形貌进行了三维测量、显微观察及物性分析。结果表明:改性聚酰亚胺在飞秒激光作用下发生光化学和光热反应,材料以宽而圆滑的弧形沟壑形式逐层被去除,并形成了波纹阶梯、颗粒物堆积等烧蚀显微结构;加工过程中材料烧蚀反应随加工圈数的增加而减弱;微孔深度的变化速率基本保持不变,材料去除量随加工圈数的增加而减小并在最后剧增;飞秒激光可实现改性聚酰亚胺基材表面高质量微孔加工。
  • 图  1  飞秒激光加工微孔方式示意图

    图  2  飞秒激光加工MPI微孔质量测量示意图

    图  3  微孔最小外接圆半径与同心内切圆半径[13]

    图  4  飞秒激光加工MPI微孔孔型变化(单脉冲能量0.004 5 mJ, 脉冲重叠率96.67%)

    图  5  飞秒激光加工MPI微孔表面形貌变化(单脉冲能量0.004 5 mJ, 脉冲重叠率96.67%)

    图  6  MPI热解的TG曲线和DTG曲线

    (空气气氛, 升温速率10 ℃/min)

    图  7  MPI热解后气体产物的FT-IR谱图

    图  8  飞秒激光加工MPI微孔表面形貌及能谱图(单脉冲能量0.004 5 mJ, 脉冲重叠率96.67%, 加工圈数4)

    图  9  飞秒激光加工MPI微孔的材料去除过程示意图

    图  10  飞秒激光加工MPI过程微孔深度变化(单脉冲能量0.004 5 mJ, 脉冲重叠率96.67%)

    图  11  飞秒激光加工MPI过程微孔材料去除比例变化

    (单脉冲能量0.004 5 mJ, 脉冲重叠率96.67%)

    图  12  飞秒激光加工MPI微孔加工质量(单脉冲能量0.004 5 mJ, 脉冲重叠率96.67%, 加工圈数5)

    表  1  飞秒激光加工系统规格参数

    参数名称 数值及单位
    波长 343 nm
    峰值功率 30 W
    光束质量M2 <1.3
    光斑直径 20 μm
    下载: 导出CSV
  • [1] 谌凯, 任英杰, 张帆, 等. 基于专利分析的高频覆铜板发展态势研究[J]. 绝缘材料, 2021, 54(12): 101-106 https://www.cnki.com.cn/Article/CJFDTOTAL-JYCT202112016.htm

    SHEN K, REN Y J, ZHANG F, et al. Research on development status of high-frequency copper-clad laminate on basis of patent analysis[J]. Insulating Materials, 2021, 54(12): 101-106 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYCT202112016.htm
    [2] 新思界网. 5G时代到来, 改性聚酰亚胺(MPI)应用需求持续增长[DB/OL]. (2021-08-10)[2022-01-10]. https://www.163.com/dy/article/GGVK0CP30514E30D.html

    Xinsijie Network. The 5G era is coming, and the demand for modified polyimide MPI applications will continue to grow after 2021[EB/OL]. (2021-08-10)[2022-01-10]. https://www.163.com/dy/article/GGVK0CP30514E30D.html (in Chinese)
    [3] 杨宏强. PCB微孔成孔技术的现状[J]. 印制电路信息, 2020, 28(4): 31-38 https://www.cnki.com.cn/Article/CJFDTOTAL-YZDL202004009.htm

    YANG H Q. Current status of PCB micro-via processing technology[J]. Printed Circuit Information, 2020, 28(4): 31-38 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YZDL202004009.htm
    [4] 刘雷文. 紫外激光在柔性线路板盲孔微加工中的应用[J]. 中国高新科技, 2019(7): 110-112 https://www.cnki.com.cn/Article/CJFDTOTAL-GXKE201907040.htm

    LIU L W. Application of ultraviolet laser in blind via micromachining of flexible circuit board[J]. China High-Tech, 2019(7): 110-112 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKE201907040.htm
    [5] 聂世琳, 管迎春. 紫外激光器及其在微加工中的应用[J]. 光电工程, 2017, 44(12): 1169-1179 https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201712008.htm

    NIE S L, GUAN Y C. Review of UV laser and its applications in micromachining[J]. Opto-Electronic Engineering, 2017, 44(12): 1169-1179 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201712008.htm
    [6] GAUTAM G D, PANDEY A K. Pulsed Nd: YAG laser beam drilling: A review[J]. Optics and Laser Technology, 2018, 100: 183-215 doi: 10.1016/j.optlastec.2017.09.054
    [7] 赵城, 田新博, 刘宏伟, 等. 5G高频LCP带胶材料UV激光盲孔品质改善研究[J]. 印制电路信息, 2021, 29(S1): 172-178 https://www.cnki.com.cn/Article/CJFDTOTAL-YZDL2021S1027.htm

    ZHAO C, TIAN X B, LIU H W, et al. Research on the quality improvement of UV laser blind hole of 5G high frequency LCP adhesive material[J]. Printed Circuit Information, 2021, 29(S1): 172-178 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YZDL2021S1027.htm
    [8] ZHAO W Q, WANG L Z. Microdrilling of through-holes in flexible printed circuits using picosecond ultrashort pulse laser[J]. Polymers, 2018, 10(12): 1390 doi: 10.3390/polym10121390
    [9] 郭钊. 不同偏振光对FPC打孔加工技术研究[D]. 武汉: 湖北工业大学, 2017

    GUO Z. Study on drilling technology of FPC with different polarized light[D]. Wuhan: Hubei University of Technology, 2017 (in Chinese)
    [10] 刘凯. FPC覆铜板飞秒激光刻蚀及细微线路成形技术的研究[D]. 苏州: 苏州大学, 2019

    LIU K. Research on FPC CCL etching and fine line forming technology based on femtosecond laser[D]. Suzhou: Soochow University, 2019 (in Chinese)
    [11] 张云龙, 孙树峰, 王茜, 等. 激光加工微孔质量的研究[J]. 激光与光电子学进展, 2021, 58(19): 1900002 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202119004.htm

    ZHANG Y L, SUN S F, WANG X, et al. Research on quality of micro-holes fabricated by laser drilling[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900002 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202119004.htm
    [12] WU Q, WANG J, HUANG C Z. Analysis of the machining performance and surface integrity in laser milling of polycrystalline diamonds[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228(6): 903-917 doi: 10.1177/0954405413510290
    [13] 岳端木, 孙会来, 杨雪, 等. 飞秒激光环切加工不锈钢微孔工艺及其质量控制神经网络模型[J]. 红外与激光工程, 2021, 50(10): 20200446 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202110017.htm

    YUE D M, SUN H L, YANG X, et al. Annular drilling process and quality control neural network model of stainless steel micro-hole with femtosecond laser[J]. Infrared and Laser Engineering, 2021, 50(10): 20200446 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202110017.htm
    [14] 付立凡, 王丹, 谢春萍, 等. 基于热重红外联用法的聚酰亚胺阻燃织物热解行为研究[J]. 化工新型材料, 2020, 48(2): 237-240 https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC202002051.htm

    FU L F, WANG D, XIE C P, et al. Study on pyrolysis behavior of polyimide flame retardant fabric based on TG-FTIR method[J]. New Chemical Materials, 2020, 48(2): 237-240 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC202002051.htm
    [15] 林恩旻. 超短脉冲激光制备精密微孔的技术研究[D]. 苏州: 苏州大学, 2019

    LIN E M. Research on fabrication of precision micropores by ultrashort pulsed laser[D]. Suzhou: Soochow University, 2019 (in Chinese)
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  35
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回