留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柴油机螺旋进气道直流段的正交优化设计

张韦 庞晨晨 包广元 陈朝辉 陈永 范吉文

张韦, 庞晨晨, 包广元, 陈朝辉, 陈永, 范吉文. 柴油机螺旋进气道直流段的正交优化设计[J]. 机械科学与技术, 2023, 42(7): 1120-1128. doi: 10.13433/j.cnki.1003-8728.20220066
引用本文: 张韦, 庞晨晨, 包广元, 陈朝辉, 陈永, 范吉文. 柴油机螺旋进气道直流段的正交优化设计[J]. 机械科学与技术, 2023, 42(7): 1120-1128. doi: 10.13433/j.cnki.1003-8728.20220066
ZHANG Wei, PANG Chenchen, BAO Guangyuan, CHEN Zhaohui, CHEN Yong, FAN Jiwen. Orthogonal Optimization Design of Direct Current Section of Diesel Engine Helical Intake Port[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1120-1128. doi: 10.13433/j.cnki.1003-8728.20220066
Citation: ZHANG Wei, PANG Chenchen, BAO Guangyuan, CHEN Zhaohui, CHEN Yong, FAN Jiwen. Orthogonal Optimization Design of Direct Current Section of Diesel Engine Helical Intake Port[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1120-1128. doi: 10.13433/j.cnki.1003-8728.20220066

柴油机螺旋进气道直流段的正交优化设计

doi: 10.13433/j.cnki.1003-8728.20220066
基金项目: 

国家自然科学基金项目 51665023

国家自然科学基金项目 51666007

详细信息
    作者简介:

    张韦(1979-), 教授, 博士生导师, 博士, 研究方向为内燃机燃烧与排放控制, koko_575@aliyun.com

    通讯作者:

    陈朝辉, 副教授, 博士, chenzhaohuiok@sina.com

  • 中图分类号: TK421

Orthogonal Optimization Design of Direct Current Section of Diesel Engine Helical Intake Port

  • 摘要: 通过构建YN33柴油机气道-气门-燃烧室计算流体动力学(Computational fluid dynamics,CFD)模型,以涡流比和进气量作为评价指标,对柴油机螺旋进气道直流段的直流段上偏角、直流段下偏角、直流段长度这3个关键结构参数进行正交优化设计。结果表明:直流段长度对缸内涡流比、进气量的影响最大;直流段上偏角、直流段下偏角及直流段长度3个参数,分别取值82°、85°和69 mm时,可使缸内涡流比和进气量相对原机分别提高26.02%与5.50%;在此条件下,放热率峰值和累积放热量与原机相比分别增加了4.92%和8.29%。
  • 图  1  YN柴油机进、排气门升程曲线

    Figure  1.  Intake and exhaust valve lift curves for the YN diesel engine

    图  2  气道-气门-燃烧室CAD模型

    Figure  2.  CAD model of the air inlet duct-valve-combustion chamber

    图  3  网格敏感性分析

    Figure  3.  Grid sensitivity analysis

    图  4  气道-气门-燃烧室CFD模型

    Figure  4.  CFD model of the air inlet duct-valve-combustion chamber

    图  5  计算过程中的CFD模型网格数量

    Figure  5.  Number of grids in the CFD model during the calculation process

    图  6  CFD模型验证

    Figure  6.  Validation of the CFD model

    图  7  YN螺旋进气道在缸盖中的定位

    Figure  7.  Positioning of the spiral air inlet duct in the cylinder head of the YN engine

    图  8  螺旋气道直流段设计参数定义

    Figure  8.  Design parameter definitions for the straight section of the spiral air inlet duct

    图  9  螺旋气道直流段上限

    Figure  9.  Upper limit of the straight section of the spiral air inlet duct

    图  10  螺旋气道直流段下限

    Figure  10.  Lower limit of the straight section of the spiral air inlet duct

    图  11  螺旋气道直流段设计边界

    Figure  11.  Design boundaries of the straight section of the spiral air inlet duct

    图  12  原机-上限的涡流比

    Figure  12.  Vortex ratio at the upper limit of the original engine

    图  13  原机-上限的进气量

    Figure  13.  Intake air mass flow rate at the upper limit of the original engine

    图  14  原机-下限的涡流比

    Figure  14.  Vortex ratio at the lower limit of the original engine

    图  15  原机-下限的进气量

    Figure  15.  Intake air mass flow rate at the lower limit of the original engine

    图  16  气道直流段的因素与水平对涡流比的影响

    Figure  16.  The influence of factors and levels of the straight section of the air inlet duct on vortex ratio

    图  17  气道直流段的因素与水平对进气量的影响

    Figure  17.  The influence of factors and levels of the straight section on intake air mass flow rate

    图  18  直流段关键结构参数对缸内压力的影响

    Figure  18.  The influence of the key structural parameters of the straight section on in-cylinder pressure

    图  19  直流段关键结构参数对缸内温度的影响

    Figure  19.  The influence of the key structural parameters of the straight section on in-cylinder temperature

    图  20  直流段关键结构参数对放热率的影响

    Figure  20.  The influence of the key structural parameters of the straight section on heat release rate

    图  21  直流段关键结构参数对累积放热量的影响

    Figure  21.  The influence of the key structural parameters of the straight section on cumulative heat release

    表  1  YN柴油机主要技术参数

    Table  1.   The main technical parameters of the YN diesel engine

    参数 数值
    型号 YN33CRD1
    型式 4缸直列、4冲程
    缸径×行程/mm 100×105
    发动机排量/L 3.298
    压缩比 17.5∶1
    标定功率/kW 85 (3 200 r/min)
    最大扭矩/Nm 300 (1 600~2 400 r/min)
    气门重叠角/℃A 11
    燃烧室型式 直喷ω
    气缸套型式 湿式
    增压系统 废气涡轮增压器
    燃油系统 BOSCH高压共轨系统
    下载: 导出CSV

    表  2  原机-边界直流段参数对比

    Table  2.   Comparison of original engine and boundary straight section parameters

    名称 α β α/β L Lold/Lnew AB ABold/ABnew AC ACold/ACnew γ γold/γnew
    原机 84° 82° 1.024 71 192.8 192.2 14°
    边界 75° 75° 1 73 0.973 131 1.472 131 1.467 30° 0.467
    下载: 导出CSV

    表  3  正交试验因素水平表

    Table  3.   Levels of orthogonal experimental factors

    水平 α/(°) β/(°) L/mm
    1 86 85 73
    2 84 82 71
    3 82 79 69
    下载: 导出CSV

    表  4  试验方案及试验结果

    Table  4.   Experimental design and results

    方案 α/(°) β/(°) L/mm 涡流比 进气量/g
    1 86 85 73 3.02 1.47
    2 86 82 71 3.44 1.57
    3 86 79 69 3.66 1.60
    4 84 79 73 3.19 1.49
    5 84 85 71 3.72 1.55
    6 84 82 69 4.07 1.59
    7 82 82 73 3.27 1.52
    8 82 79 71 3.83 1.56
    9 82 85 69 4.15 1.59
    下载: 导出CSV

    表  5  试验结果分析

    Table  5.   Analysis of experimental results

    指标 α/(°) β/(°) L/mm
    K1 10.12 10.89 9.48
    K2 10.98 10.78 10.99
    K3 11.25 10.68 11.88
    涡流比 k1 3.37 3.63 3.16
    k2 3.66 3.59 3.66
    k3 3.75 3.56 3.96
    极差RA 0.38 0.07 0.80
    K1 4.64 4.61 4.48
    K2 4.63 4.68 4.68
    K3 4.67 4.65 4.78
    进气量/g k1 1.55 1.54 1.49
    k2 1.54 1.56 1.56
    k3 1.56 1.55 1.59
    极差RB 0.01 0.02 0.10
    下载: 导出CSV
  • [1] WANG G X, YU W B, LI X B, et al. Experimental and numerical study on the influence of intake swirl on fuel spray and in-cylinder combustion characteristics on large bore diesel engine[J]. Fuel, 2019, 237: 209-221. doi: 10.1016/j.fuel.2018.09.156
    [2] YOON S, LEE S, KWON H, et al. Effects of the swirl ratio and injector hole number on the combustion and emission characteristics of a light duty diesel engine[J]. Applied Thermal Engineering, 2018, 142: 68-78. doi: 10.1016/j.applthermaleng.2018.06.076
    [3] YOUSEFI A, GUO H S, BIROUK M. Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions[J]. Applied Energy, 2018, 229: 375-388. doi: 10.1016/j.apenergy.2018.08.017
    [4] CHEN Y L, LI X R, SHI S N, et al. Effects of intake swirl on the fuel/air mixing and combustion performance in a lateral swirl combustion system for direct injection diesel engines[J]. Fuel, 2021, 286: 119376. doi: 10.1016/j.fuel.2020.119376
    [5] CHARALAMBIDES A G, SAHU S, HARDALUPAS Y, et al. Evaluation of Homogeneous Charge Compression Ignition (HCCI) autoignition development through chemiluminescence imaging and Proper Orthogonal Decomposition[J]. Applied Energy, 2018, 210: 288-302. doi: 10.1016/j.apenergy.2017.11.010
    [6] TOKUDA S, KUBOTA M, NOGUCHI Y. Development of CFD shape optimization technology using the adjoint method and its application to engine intake port design[J]. SAE International Journal of Engines, 2013, 6(2): 833-842. doi: 10.4271/2013-01-0969
    [7] WANG G X, YU W B, LI X B, et al. Influence of fuel injection and intake port on combustion characteristics of controllable intake swirl diesel engine[J]. Fuel, 2020, 262: 116548. doi: 10.1016/j.fuel.2019.116548
    [8] SHARMA V K, MOHAN M, MOULI C. Effect of intake swirl on the performance of single cylinder direct injection diesel engine[J]. IOP Conference Series: Materials Science and Engineering, 2017, 263(6): 062077.
    [9] AGARWAL A K, GADEKAR S, SINGH A P. In-cylinder air-flow characteristics of different intake port geometries using tomographic PIV[J]. Physics of Fluids, 2017, 29(9): 095104. doi: 10.1063/1.5000725
    [10] BENAJES J, OLMEDA P, MARTÍN J, et al. Evaluation of swirl effect on the global energy balance of a HSDI diesel engine[J]. Energy, 2017, 122: 168-181. doi: 10.1016/j.energy.2017.01.082
    [11] 张韦, 解礼兵, 陈朝辉, 等. 进气道螺旋段关键结构参数多目标优化设计[J]. 汽车工程, 2021, 43(3): 337-344. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202103005.htm

    ZHANG W, XIE L B, CHEN Z H, et al. Multi-objective optimization design of key structural parameters of spiral section of helical inlet[J]. Automotive Engineering, 2021, 43(3): 337-344. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202103005.htm
    [12] DAI X Y, WANG Z M, LIU F S, et al. The effect of nozzle structure and initial state on the primary breakup of diesel spray[J]. Fuel, 2020, 280: 118640. doi: 10.1016/j.fuel.2020.118640
    [13] ROSTAMIAN H, LOTFOLLAHI M N. Modified Redlich-Kwong and Peng-Robinson equations of state for solubility calculation of solid compounds in supercritical carbon dioxide[J]. Indian Journal of Science and Technology, 2016, 9(16): 1-11 doi: 10. 17485/ijst/2016/v9i16/52344.
    [14] 顾雨濛, 李铁, 魏义杰, 等. 柴油喷雾蒸发仿真中KH-RT模型的数值试验研究[J]. 内燃机工程, 2019, 40(1): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201901006.htm

    GU Y M, LI T, WEI Y J, et al. Numerical study on KH-RT model constants in simulation of evaporating diesel spray[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(1): 36-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201901006.htm
    [15] 侯硕, 曹义华. 基于雷诺平均Navier-Stokes方程的表面传热系数计算[J]. 航空动力学报, 2015, 30(6): 1319-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201506007.htm

    HOU S, CAO Y H. Calculation of surface heat transfer coefficient based on Reynolds-averaged Navier-Stokes equations[J]. Journal of Aerospace Power, 2015, 30(6): 1319-1327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201506007.htm
    [16] AKHLAGHI H, ROOHI E, STEFANOV S. On the consequences of successively repeated collisions in no-time-counter collision scheme in DSMC[J]. Computers & Fluids, 2018, 161: 23-32.
    [17] 杜巍, 侯金赤, 安一峰. 壁面温度对柴油喷雾碰壁质量分布的影响[J]. 内燃机学报, 2019, 37(2): 130-138. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201902005.htm

    DU W, HOU J C, AN Y F. Effect of wall temperature on mass distribution of diesel spray-wall impingement[J]. Transactions of CSICE, 2019, 37(2): 130-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201902005.htm
    [18] 张韦, 常少月, 陈朝辉, 等. DNH三燃料简化化学动力学机理的构建与验证[J]. 燃烧科学与技术, 2017, 23(4): 331-338. https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201704008.htm

    ZHANG W, CHANG S Y, CHEN Z H, et al. Construction and validation of a reduced chemical kinetics mechanism for diesel/natural gas/hydrogen engine simulations[J]. Journal of Combustion Science and Technology, 2017, 23(4): 331-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201704008.htm
    [19] JIANG S S, ZHU S W, WEN H, et al. Parameter analysis of diesel helical intake port numerical design[J]. Energy Procedia, 2012, 16: 558-563.
    [20] ABO-ELFADL S, EL-SABOR MOHAMED A A. The effect of the helical inlet port design and the shrouded inlet valve condition on swirl generation in diesel engine[J]. Journal of Energy Resources Technology, 2018, 140(3): 032203.
    [21] 程刚, 郭永存, 胡坤, 等. 永磁涡流调速器传动性能分析与正交实验优化[J]. 机械科学与技术, 2018, 37(12): 1948-1955. doi: 10.13433/j.cnki.1003-8728.20180085

    CHENG G, GUO Y C, HU K, et al. Transmission characteristics analysis and orthogonal experimental optimization of permanent magnet eddy current coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1948-1955. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180085
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  59
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回