Bearing Fault Transfer Diagnosis with Balanced Distribution Adaptation Under Variable Working Conditions
-
摘要: 针对机器学习方法中样本满足独立同分布导致的诊断精度低下问题,提出了平衡分布自适应(BDA)算法与K-最近邻(KNN)分类算法结合的轴承故障迁移诊断方法。提取变工况下的轴承故障信号的时域特征分别作为源域和目标域,并利用Fisher判别分析方法优选特征;基于BDA将不同工况的特征样本映射至可再生希尔伯特空间,引入最大均值差异(MMD)对变工况样本的边缘分布差异和条件分布差异进行适配;利用KNN分类器对分布适配后的样本进行迁移诊断。仿真和实验表明:本文方法在同实验平台和跨实验平台迁移上,轴承诊断的准确性和分布距离相较于其他算法优势明显。Abstract: To address the problem of low diagnostic accuracy caused by samples satisfying independent identical distribution in machine learning methods, in this paper, we propose a bearing fault transfer diagnosis method combining the balanced distribution adaptive algorithm and the K-nearest neighbor classification algorithm. Firstly, the time domain features of the bearing fault signals under variable operating conditions are extracted as the source and target domains, respectively, the Fisher discriminant analysis method is used to prefer the features. Secondly, the feature samples of different working conditions are mapped to the reproducible Hilbert space based on balanced distribution adaptive, the maximum mean discrepancy is introduced to adapt the edge distribution discrepancy and conditional distribution discrepancy of the variable working condition samples. Finally, the K-nearest neighbor classifier is used to perform migration diagnosis on the samples after the distribution adaptation. Simulation and experimental validation show that the accuracy and distribution distance of the bearing diagnosis of the proposed method are significantly advantageous compared with other algorithms on both same-experimental platform and cross-experimental platform transference.
-
表 1 CWRU轴承样本集
Table 1. CWRU bearing sample set
类型 采样频率/kHz 转速/(r·min−1) 故障直径/mm 正常故障 48 1797 0 外圈故障 48 1797 0.7112 内圈故障 48 1797 0.7112 滚子故障 48 1797 0.7112 正常故障 12 1772 0 外圈故障 12 1772 0.7112 内圈故障 12 1772 0.7112 滚子故障 12 1772 0.7112 正常故障 12 1750 0 外圈故障 12 1750 0.7112 内圈故障 12 1750 0.7112 滚子故障 12 1750 0.7112 表 2 实验室轴承样本集
Table 2. Laboratory bearing sample set
类型 采样频率/kHz 转速/(r·min−1) 故障直径/mm 正常故障 25.6 600 0 外圈故障 25.6 600 1 内圈故障 25.6 600 1 滚子故障 25.6 600 1 正常故障 25.6 800 0 外圈故障 25.6 800 1 内圈故障 25.6 800 1 滚子故障 25.6 800 1 正常故障 25.6 1200 0 外圈故障 25.6 1200 1 内圈故障 25.6 1200 1 滚子故障 25.6 1200 1 表 3 时域特征函数表达式
Table 3. Time-domain characteristic functional expressions
时域特征 函数表达式 有效值 $ {X_{{\rm{RMS}}}} = \sqrt {\dfrac{1}{n}\displaystyle\sum\limits_{i = 1}^n {{{\left| {x(i)} \right|}^2}} } $ 歪度 $ K = \dfrac{{ \dfrac{1} {n}\displaystyle\sum\limits_{i = 1}^n {{{\left[ {x(i) - \mu } \right]}^3}} }}{{{\sigma ^3}}} $ 峭度 $ K = \dfrac{{ \dfrac{1}{n}\displaystyle\sum\limits_{i = 1}^n {{{\left[ {x(i) - \mu } \right]}^4}} }}{{{\sigma ^4}}} $ 峰值 $ {X_{\max }} = \max \left[ {x(i)} \right] $ 峰峰值 $ X = {X_{\max }} - {X_{\min }} $ 波形因数 $ W = \dfrac{{{X_{\rm {RMS}}}}}{{\left| {\bar x} \right|}} $ 脉冲因数 $ I = \dfrac{{{X_{\max }}}}{{{X_{\rm {RMS}}}}} $ 峰值因数 $ C = \dfrac{{{X_p}}}{{{X_{\rm {RMS}}}}} $ 裕度 $ L = \dfrac{{{X_p}}}{{{X_r}}} $ 表 4 同实验平台迁移的不同分布差异准确率
Table 4. Accuracy of different distribution differences in transfer within the same experimental platform
% 迁移任务 300 r/min→
800 r/min600 r/min→
1 200 r/min800 r/min→
1 200 r/minKNN 56.67 55.08 58.24 PCA 57.02 56.98 59.64 TCA 73.83 76.62 74.54 JDA 86.23 85.98 88.96 BDA 100 99.42 100 表 5 跨实验平台迁移的不同分布差异准确率
Table 5. Accuracy of different distribution differences in transfer across different experimental platforms
% 迁移任务 1 797 r/min→
1 200 r/min1 772 r/min→
1 200 r/min1 750 r/min→
1 200 r/minKNN 76.67 75.08 78.24 PCA 44.54 47.03 42.59 TCA 61.73 62.88 59.25 JDA 76.62 86.17 78.61 BDA 98.57 93.46 87.73 -
[1] WANG Y X, WEI Z X, YANG J W. Feature trend extraction and adaptive density peaks search for intelligent fault diagnosis of machines[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 105-115. doi: 10.1109/TII.2018.2810226 [2] 邵阳, 武建文, 马速良, 等. 用于高压断路器机械故障诊断的AM-ReliefF特征选择下集成SVM方法[J]. 中国电机工程学报, 2021, 41(8): 2890-2900.SHAO Y, WU J W, MA S L, et al. Integrated SVM method with AM-ReliefF feature selection for mechanical fault diagnosis of high voltage circuit breakers[J]. Proceedings of the CSEE, 2021, 41(8): 2890-2900. (in Chinese) [3] 张文兴, 刘文翰, 王建国. FPCA和径向基极限学习机的齿轮箱故障检测方法[J]. 机械科学与技术, 2020, 39(12): 1872-1876.ZHANG W X, LIU W H, WANG J G. FPCA-RBF-ELM-based gearbox fault detection method[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1872-1876. (in Chinese) [4] 庞梦洋, 索中英, 郑万泽, 等. 基于RS-CART决策树的航空发动机小样本故障诊断[J]. 航空动力学报, 2020, 35(7): 1559-1568.PANG M Y, SUO Z Y, ZHENG W Z, et al. Small sample fault diagnosis of aeroengine based on RS-CART decision tree[J]. Journal of Aerospace Power, 2020, 35(7): 1559-1568. (in Chinese) [5] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8. doi: 10.3901/JME.2019.07.001LEI Y G, YANG B, DU Z J, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7): 1-8. (in Chinese) doi: 10.3901/JME.2019.07.001 [6] 王肖雨, 童靳于, 郑近德, 等. 基于流形嵌入分布对齐的滚动轴承迁移故障诊断方法[J]. 振动与冲击, 2021, 40(8): 110-116.WANG X Y, TONG J Y, ZHENG J D, et al. Transfer fault diagnosis for rolling bearings based on manifold embedded distribution alignment[J]. Journal of Vibration and Shock, 2021, 40(8): 110-116. (in Chinese) [7] 王廷轩, 刘韬, 王振亚, 等. 融合迁移卷积神经网络的跨域滚动轴承故障诊断[J]. 电子测量技术, 2021, 44(10): 167-174.WANG T X, LIU T, WANG Z Y, et al. Cross-domain rolling bearing fault diagnosis based on convolutional neural network combined with transfer learning[J]. Electronic Measurement Technology, 2021, 44(10): 167-174. (in Chinese) [8] 康守强, 邹佳悦, 王玉静, 等. 基于无监督特征对齐的变负载下滚动轴承故障诊断方法[J]. 中国电机工程学报, 2020, 40(1): 274-281. doi: 10.13334/j.0258-8013.pcsee.190626KANG S Q, ZOU J Y, WANG Y J, et al. Fault diagnosis method of a rolling bearing under varying loads based on unsupervised feature alignment[J]. Proceedings of the CSEE, 2020, 40(1): 274-281. (in Chinese) doi: 10.13334/j.0258-8013.pcsee.190626 [9] 沈飞, 陈超, 徐佳文, 等. 谱质心迁移在变工况轴承故障诊断的应用[J]. 仪器仪表学报, 2019, 40(5): 99-108.SHEN F, CHEN C, XU J W, et al. Application of spectral centroid transfer inbearing fault diagnosis under varying working conditions[J]. Chinese Journal of Scientific Instrument, 2019, 40(5): 99-108. (in Chinese) [10] DONG X N, FAN D Q, WEN G R, et al. A new gearbox compound fault recognition approach based on improved double wavelet packet transform[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2020, 62(4): 232-237. doi: 10.1784/insi.2020.62.4.232 [11] LEE K, HAN S, PHAM V H, et al. Multi-objective instance weighting-based deep transfer learning network for intelligent fault diagnosis[J]. Applied Sciences, 2021, 11(5): 2370. doi: 10.3390/app11052370 [12] PAN Y B, HONG R J, CHEN J, et al. Performance degradation assessment of wind turbine gearbox based on maximum mean discrepancy and multi-sensor transfer learning[J]. Structural Health Monitoring, 2021, 20(1): 118-138. doi: 10.1177/1475921720919073 [13] 常春, 王国威, 梅检民, 等. 基于小波包-AR谱和支持向量机的连杆轴承故障诊断[J]. 军事交通学院学报, 2015, 17(4): 40-44. doi: 10.3969/j.issn.1674-2192.2015.04.010CHANG C, WANG G W, MEI J M, et al. Connecting rod bearing fault diagnosis based on the wavelet packet-auto regressive model spectrum and support vector machine[J]. Journal of Academy of Military Transportation, 2015, 17(4): 40-44. (in Chinese) doi: 10.3969/j.issn.1674-2192.2015.04.010 [14] TAO X M, REN C, LI Q, et al. Bearing defect diagnosis based on semi-supervised kernel Local Fisher Discriminant Analysis using pseudo labels[J]. ISA Transactions, 2021, 110: 394-412. doi: 10.1016/j.isatra.2020.10.033 [15] YAN R Q, SHEN F, ZHOU M J. Induction motor fault diagnosis based on transfer principal component analysis[J]. Chinese Journal of Electronics, 2021, 30(1): 18-25. doi: 10.1049/cje.2020.11.003 [16] 刘应东, 刘韬, 李华, 等. 变工况轴承的联合分布适应迁移故障诊断[J]. 电子测量与仪器学报, 2021, 35(5): 69-75.LIU Y D, LIU T, LI H, et al. Transfer fault diagnosis of bearings under variable working conditions based on joint distribution adaptation[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(5): 69-75. (in Chinese) [17] 赵志宏, 赵敬娇, 李晴, 等. 基于一维密集连接卷积网络的故障诊断研究[J]. 西南大学学报(自然科学版), 2020, 42(12): 25-33.ZHAO Z H, ZHAO J J, LI Q, et al. Fault diagnosis based on one-dimensional densely connected CNN[J]. Journal of Southwest University (Natural Science Edition), 2020, 42(12): 25-33. (in Chinese) -