Designing Honeybee Abdomen's Morphing Mechanism and Its Kinematic Analysis
-
摘要: 受蜜蜂腹部变形机制的启发,设计一种能够实现伸缩和弯曲的仿生变体头锥机构,该机构采用三组RSH/RRR支链并联机构形式。通过旋量理论计算变体机构的自由度,结果表明该机构的运动自由度满足变体头锥的变形要求,可作为变体头锥的变形展开骨架。然后对变体机构的动态性能进行了仿真分析,结果表明变体机构的变形量满足设计要求,受力情况下仍能保持较稳定的运动状态,变体头锥机构动态性能良好。该变体机构可以提高头锥的灵活性和适应性,同时,该机构的自锁特性和并联分布方式增强了头锥变形的稳定性。Abstract: Inspired by the deformation mechanism of honeybee abdomen, this paper designed a bionic morphing mechanism that can achieve expansion and bending. The morphing mechanism adopted three groups of RSH/RRR branch chains in parallel. The screw theory was used to calculate the degree of freedom of the morphing mechanism. The results show that the kinematic degree of freedom of the morphing mechanism meets the deformation requirements of the morphing nose cone and can be used as its deformation expanding skeleton. Then the dynamic performance of the variant mechanism was simulated and analyzed. The results show that the deformation of the variant mechanism can meet the design requirements and that it can still maintain a relatively stable motion state under load condition. The dynamic performance of the morphing nose cone is good. The variant mechanism can improve the flexibility and adaptability of the morphing nose cone. Meanwhile, the self-locking characteristic and the parallel distribution of three groups of branch chains of the morphing mechanism enhance the stability of the morphing nose cone.
-
Key words:
- bionic morphing mechanism /
- parallel mechanism /
- morphing nose cone /
- dynamic propert
-
表 1 头锥各节外壳尺寸参数
Table 1. Shell dimensions of each section of the head cone
参数 环1 环2 环3 最大直径/mm 434 420 334 长度/mm 200 200 200 厚度/mm 10 10 10 -
[1] ZHANG Y L, ZHAO J L, CHEN W H, et al. Biomimetic skeleton structure of morphing nose cone for aerospace vehicle inspired by variable geometry mechanism of honeybee abdomen[J]. Aerospace Science and Technology, 2019, 92: 405-416. doi: 10.1016/j.ast.2019.06.010 [2] WEISSHAAR T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Aircraft, 2013, 50(2): 337-353. doi: 10.2514/1.C031456 [3] JIANG W L, DONG C Y, WANG Q. A systematic method of smooth switching LPV controllers design for a morphing aircraft[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1640-1649. doi: 10.1016/j.cja.2015.10.005 [4] DI LUCA M, MINTCHEV S, HEITZ G, et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones[J]. Interface Focus, 2017, 7(1): 20160092. doi: 10.1098/rsfs.2016.0092 [5] KAMMEGNE M J T, BOTEZ R M, GRIGORIE L T, et al. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing[J]. Chinese Journal of Aeronautics, 2017, 30(2): 561-576. doi: 10.1016/j.cja.2017.02.001 [6] YUE T, ZHANG X Y, WANG L X, et al. Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing[J]. Aerospace Science and Technology, 2017, 70: 328-338. doi: 10.1016/j.ast.2017.08.013 [7] GAO L, LI C L, JIN H Z, et al. Aerodynamic characteristics of a novel catapult launched morphing tandem-wing unmanned aerial vehicle[J]. Advances in Mechanical Engineering, 2017, 9(2): 168781401769229. [8] 彭悟宇, 杨涛, 涂建秋, 等. 高超声速变形飞行器翼面变形模式分析[J]. 国防科技大学学报, 2018, 40(3): 15-21. doi: 10.11887/j.cn.201803003PENG W Y, YANG T, TU J Q, et al. Analysis on wing deformation modes of hypersonic morphing aircraft[J]. Journal of National University of Defense Technology, 2018, 40(3): 15-21. (in Chinese) doi: 10.11887/j.cn.201803003 [9] 彭悟宇, 杨涛, 王常悦, 等. 高超声速伸缩翼变形飞行器轨迹多目标优化[J]. 国防科技大学学报, 2019, 41(1): 41-47. doi: 10.11887/j.cn.201901007PENG W Y, YANG T, WANG C Y, et al. Trajectory multi-objective optimization for hypersonic telescopic wing morphing aircraft[J]. Journal of National University of Defense Technology, 2019, 41(1): 41-47. (in Chinese) doi: 10.11887/j.cn.201901007 [10] JENETT B, CALISCH S, CELLUCCI D, et al. Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures[J]. Soft Robotics, 2017, 4(1): 33-48. doi: 10.1089/soro.2016.0032 [11] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084 [12] WU J N, LI J L, YAN S Z. Design of deployable Bistable structures for morphing skin and its structural optimization[J]. Engineering Optimization, 2014, 46(6): 745-762. doi: 10.1080/0305215X.2013.800055 [13] LI J L, WU J N, YAN S Z. Conceptual design of deployment structure of morphing nose cone[J]. Advances in Mechanical Engineering, 2013, 5: 590957. doi: 10.1155/2013/590957 [14] 果晓东, 李君兰, 陈炜铧, 等. 基于伞式导杆机构的变体头锥设计与仿真[J]. 光学 精密工程, 2018, 26(2): 336-343. doi: 10.3788/OPE.20182602.0336GUO X D, LI J L, CHEN W Y, et al. Design and simulation of morphing nose cone for umbrella guide‐rod mechanism[J]. Optics and Precision Engineering, 2018, 26(2): 336-343. (in Chinese) doi: 10.3788/OPE.20182602.0336 [15] ZHAO J L, YAN S Z, DENG L R, et al. Design and analysis of biomimetic nose cone for morphing of aerospace vehicle[J]. Journal of Bionic Engineering, 2017, 14(2): 317-326. doi: 10.1016/S1672-6529(16)60400-6 [16] 梁友鉴, 赵杰亮, 阎绍泽. 基于蜜蜂腹部变体机制的空天飞行器仿生变体头锥设计[J]. 机械工程学报, 2020, 56(5): 47-54. doi: 10.3901/JME.2020.05.047LIANG Y J, ZHAO J L, YAN S Z. Bionic design of morphing nose cone for aerospace vehicle based on the deformable mechanism of honeybee abdomen[J]. Journal of Mechanical Engineering, 2020, 56(5): 47-54. (in Chinese) doi: 10.3901/JME.2020.05.047 [17] ZHAO J L, HUANG H, YAN S Z. Honey bees (Apis mellifera ligustica) swing abdomen to dissipate residual flying energy landing on a wall[J]. Journal of Applied Physics, 2017, 121(9): 094702. doi: 10.1063/1.4977844 [18] LIANG Y J, ZHAO J L, YAN S Z, et al. Kinematics of stewart platform explains three-dimensional movement of honeybee′s abdominal structure[J]. Journal of Insect Science, 2019, 19(3): 4. doi: 10.1093/jisesa/iez037 [19] ZHAO J L, WU J N, YAN S Z. Movement analysis of flexion and extension of honeybee abdomen based on an adaptive segmented structure[J]. Journal of Insect Science, 2015, 15(1): 109. doi: 10.1093/jisesa/iev089 [20] ZHAO J L, YAN S Z, WU J N. Critical structure for telescopic movement of honey bee (insecta: apidae) abdomen: folded intersegmental membrane[J]. Journal of Insect Science, 2016, 16(1): 79. doi: 10.1093/jisesa/iew049 [21] ZENG D X, HUANG Z. Type synthesis of the rotational decoupled parallel mechanism based on screw theory[J]. Science China Technological Sciences, 2011, 54(4): 998-1004. doi: 10.1007/s11431-010-4239-2 [22] WEN X, LIU J, LI J, et al. Design and numerical simulation of a clamshell-shaped inlet cover for air-breathing hypersonic vehicles[J]. Journal of Zhejiang University-Science A, 2019, 20(5): 347-357. doi: 10.1631/jzus.A1800620 -