留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环平稳相关熵轴承故障诊断方法

李辉

李辉. 循环平稳相关熵轴承故障诊断方法[J]. 机械科学与技术, 2023, 42(7): 1103-1108. doi: 10.13433/j.cnki.1003-8728.20220004
引用本文: 李辉. 循环平稳相关熵轴承故障诊断方法[J]. 机械科学与技术, 2023, 42(7): 1103-1108. doi: 10.13433/j.cnki.1003-8728.20220004
LI Hui. Bearing Fault Diagnosis Method Based on Cyclostationary Correntropy Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1103-1108. doi: 10.13433/j.cnki.1003-8728.20220004
Citation: LI Hui. Bearing Fault Diagnosis Method Based on Cyclostationary Correntropy Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1103-1108. doi: 10.13433/j.cnki.1003-8728.20220004

循环平稳相关熵轴承故障诊断方法

doi: 10.13433/j.cnki.1003-8728.20220004
基金项目: 

国家自然科学基金项目 51375319

详细信息
    作者简介:

    李辉(1968-),教授,硕士生导师,博士,研究方向为非平稳信号处理及机电设备故障诊断, huili68@163.com

  • 中图分类号: TH165+.3;TN911.72

Bearing Fault Diagnosis Method Based on Cyclostationary Correntropy Analysis

  • 摘要: 相关熵是一种基于信息理论学习和核函数的相似性度量方法,不仅能有效刻画信号的时间和统计特征,而且包含了信号的高阶统计量,因而,相关熵是处理非高斯、非线性信号的有效方法。将相关熵与循环平稳信号处理方法结合,提出了一种基于循环平稳相关熵的轴承故障诊断方法。首先,简述了相关熵的基本概念,推导了循环平稳相关熵函数和循环平稳相关熵谱密度函数公式;其次,分析了循环平稳相关熵轴承故障诊断流程;最后,将循环平稳相关熵应用于轴承内圈、外圈局部裂纹故障振动信号的分析与处理。实验结果表明:相关熵能有效提取轴承故障振动信号中的周期成分,循环平稳相关熵函数和循环平稳相关熵谱密度函数能有效刻画轴承故障的频谱特征,便于进行故障特征提取与识别,验证了提出方法的优越性。
  • 图  1  轴承内圈故障振动信号及其FFT

    Figure  1.  Vibration signal and FFT of inner race faults in bearings

    图  2  轴承内圈故障信号的相关熵

    Figure  2.  Correntropy of inner race fault signals in bearings

    图  3  轴承内圈故障信号的Rxσ(α, τ)(三维图)

    Figure  3.  The Rxσ(α, τ) of inner race fault signals in bearings (3D plot)

    图  4  轴承内圈故障信号的Rxσ(α, τ)(等高线图)

    Figure  4.  The Rxσ(α, τ) of inner race fault signals in bearings (contour plot)

    图  5  轴承内圈故障信号的Sxσ(α, f)(三维图)

    Figure  5.  The Sxσ(α, f) of inner race fault signals in bearings (3D plot)

    图  6  轴承内圈故障信号的Sxσ(α, f)(等高线图)

    Figure  6.  The Sxσ(α, f) of inner race fault signals in bearings (contour plot)

    图  7  轴承内圈故障信号的DCSσ

    Figure  7.  The DCSσ of inner race fault signals in bearing

    图  8  轴承外圈故障振动信号及其FFT

    Figure  8.  Vibration signals and FFT of outer race faults in bearings

    图  9  轴承外圈故障振动信号相关熵

    Figure  9.  Correntropy of outer race fault signals in bearings

    图  10  轴承外圈故障信号的Rxσ(α, τ)(三维图)

    Figure  10.  The Rxσ(α, τ) of outer race fault signals in bearings (3D plot)

    图  11  轴承外圈故障信号的Rxσ(α, τ)(等高线图)

    Figure  11.  The Rxσ(α, τ) of outer race fault signals in bearings (contour plot)

    图  12  轴承外圈故障信号的Sxσ(α, f)(三维图)

    Figure  12.  The Sxσ(α, f) of outer race fault signals in bearings (3D plot)

    图  13  轴承外圈故障信号的Sxσ(α, f)(等高线图)

    Figure  13.  Sxσ(α, f) of outer race fault signals in bearings (contour plot)

    图  14  轴承外圈故障信号的DCSσ

    Figure  14.  The DCSσ of outer race fault signals in bearings

  • [1] GARDNER W A. The spectral correlation theory of cyclostationary time-series[J]. Signal Processing, 1986, 11(1): 13-36. doi: 10.1016/0165-1684(86)90092-7
    [2] GARDNER W A, NAPOLITANO A, PAURA L. Cyclostation-arity: half a century of research[J]. Signal Processing, 2006, 86(4): 639-697. doi: 10.1016/j.sigpro.2005.06.016
    [3] NAPOLITANO A. Cyclostationarity: limits and generaliza-tions[J]. Signal Processing, 2016, 120: 323-347. doi: 10.1016/j.sigpro.2015.09.013
    [4] NAPOLITANO A. Cyclostationarity: new trends and applica-tions[J]. Signal Processing, 2016, 120: 385-408. doi: 10.1016/j.sigpro.2015.09.011
    [5] GARDNER W A, SPOONER C M. Signal interception: performance advantages of cyclic-feature detectors[J]. IEEE Transactions on Communications, 1992, 40(1): 149-159. doi: 10.1109/26.126716
    [6] GARDNER W A, SPOONER C M. Detection and source location of weak cyclostationary signals: simplifications of the maximum-likelihood receiver[J]. IEEE Transactions on Communications, 1993, 41(6): 905-916. doi: 10.1109/26.231913
    [7] GELLI G, IZZO L, PAURA L. Cyclostationarity-based signal detection and source location in non-gaussian noise[J]. IEEE Transactions on Communications, 1996, 44(3): 368-376. doi: 10.1109/26.486331
    [8] BOUILLAUT L, SIDAHMED M. Cyclostationary approach and bilinear approach: comparison, applications to early diagnosis for helicopter gearbox and classification method based on HOCS[J]. Mechanical Systems and Signal Processing, 2001, 15(5): 923-943. doi: 10.1006/mssp.2001.1412
    [9] ANTONIADIS I, GLOSSIOTIS G. Cyclostationary analysis of rolling-element bearing vibration signals[J]. Journal of Sound and Vibration, 2001, 248(5): 829-845. doi: 10.1006/jsvi.2001.3815
    [10] ANTONI J. Cyclic spectral analysis in practice[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 597-630. doi: 10.1016/j.ymssp.2006.08.007
    [11] ANTONI J, XIN G, HAMZAOUI N. Fast computation of the spectral correlation[J]. Mechanical Systems and Signal Processing, 2017, 92: 248-277. doi: 10.1016/j.ymssp.2017.01.011
    [12] 邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001012.htm

    QIU T S. Development in signal processing based on correntropy and cyclic correntropy[J]. Journal of Electronics & Information Technology, 2020, 42(1): 105-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001012.htm
    [13] LIU W F, POKHAREL P P, PRINCIPE J C. Correntropy: a localized similarity measure[C]//Proceedings of 2006 IEEE International Joint Conference on Neural Network Proceedings. Vancouver: IEEE, 2006: 4919-4924.
    [14] SANTAMARIA I, POKHAREL P P, PRINCIPE J C. Generalized correlation function: definition, properties, and application to blind equalization[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2187-2197. doi: 10.1109/TSP.2006.872524
    [15] LIU W F, POKHAREL P P, PRINCIPE J C. Correntropy: properties and applications in non-Gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5286-5298. doi: 10.1109/TSP.2007.896065
    [16] GUNDUZ A, PRINCIPE J C. Correntropy as a novel measure for nonlinearity tests[J]. Signal Processing, 2009, 89(1): 14-23. doi: 10.1016/j.sigpro.2008.07.005
    [17] 宋爱民, 邱天爽, 佟祉谏. 对称稳定分布的相关熵及其在时间延迟估计上的应用[J]. 电子与信息学报, 2011, 33(2): 494-498. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201102044.htm

    SONG A M, QIU T S, TONG Z J. Correntropy of the symmetric stable distribution and its application to the time delay estimation[J]. Journal of Electronics & Information Technology, 2011, 33(2): 494-498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201102044.htm
    [18] 王鹏, 邱天爽, 任福全, 等. 对称稳定分布噪声下基于广义相关熵的DOA估计新方法[J]. 电子与信息学报, 2016, 38(8): 2007-2013. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201608025.htm

    WANG P, QIU T S, REN F Q, et al. A novel generalized correntropy based method for direction of arrival estimation in symmetric alpha stable noise environments[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2007-2013. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201608025.htm
    [19] YU L, QIU T S, LUAN S Y. Fractional time delay estimation algorithm based on the maximum correntropy criterion and the Lagrange FDF[J]. Signal Processing, 2015, 111: 222-229. doi: 10.1016/j.sigpro.2014.12.018
    [20] LUAN S Y, QIU T S, ZHU Y J, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120: 503-508. doi: 10.1016/j.sigpro.2015.09.023
    [21] FONTES A I R, REGO J B A, DE M. MARTINS A, et al. Cyclostationary correntropy: definition and applications[J]. Expert Systems with Applications, 2017, 69: 110-117. doi: 10.1016/j.eswa.2016.10.029
    [22] 李辉, 郝如江. 基于循环多核相关熵的故障检测方法及应用[J]. 仪器仪表学报, 2020, 41(5): 252-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202005026.htm

    LI H, HAO R J. Fault detection method based on cyclic multiple kernel correntropy and its application[J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 252-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202005026.htm
    [23] 李辉, 郝如江. 基于信息融合和广义循环互相关熵的电机轴承故障诊断[J]. 振动与冲击, 2022, 41(2): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202202024.htm

    LI H, HAO R J. Rolling bearing fault diagnosis based on sensor information fusion and generalized cyclic cross correntropy spectrum density[J]. Journal of Vibration and Shock, 2022, 41(2): 200-207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202202024.htm
    [24] 李辉. 循环相关熵谱密度估计高效算法研究[J]. 电子与信息学报, 2021, 43(2): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202102009.htm

    LI H. Study on high efficient algorithm for cyclic correntropy spectral analysis[J]. Journal of Electronics & Information Technology, 2021, 43(2): 310-318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202102009.htm
    [25] LI H, ZHANG Y P, ZHENG H Q. Hilbert-Huang transform and marginal spectrum for detection and diagnosis of localized defects in roller bearings[J]. Journal of Mechanical Science and Technology, 2009, 23(2): 291-301.
    [26] SILVERMAN B W. Density estimation for statistics and data analysis[M]. London: Chapman and Hall, 1986.
  • 加载中
图(14)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  41
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回