留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义旁瓣抵消器算法的轴承噪声信号增强研究

唐兴潮 伍星 柳小勤 王之海

唐兴潮, 伍星, 柳小勤, 王之海. 广义旁瓣抵消器算法的轴承噪声信号增强研究[J]. 机械科学与技术, 2023, 42(7): 1098-1102. doi: 10.13433/j.cnki.1003-8728.20220002
引用本文: 唐兴潮, 伍星, 柳小勤, 王之海. 广义旁瓣抵消器算法的轴承噪声信号增强研究[J]. 机械科学与技术, 2023, 42(7): 1098-1102. doi: 10.13433/j.cnki.1003-8728.20220002
TANG Xingchao, WU Xing, LIU Xiaoqin, WANG Zhihai. Research on Bearing Fault Signal Enhancement Using Generalized Sidelobe Canceller Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1098-1102. doi: 10.13433/j.cnki.1003-8728.20220002
Citation: TANG Xingchao, WU Xing, LIU Xiaoqin, WANG Zhihai. Research on Bearing Fault Signal Enhancement Using Generalized Sidelobe Canceller Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1098-1102. doi: 10.13433/j.cnki.1003-8728.20220002

广义旁瓣抵消器算法的轴承噪声信号增强研究

doi: 10.13433/j.cnki.1003-8728.20220002
基金项目: 

国家自然科学基金项目 51875272

详细信息
    作者简介:

    唐兴潮(1992-), 硕士研究生, 研究方向为机电系统故障诊断, tangchaoio@163.com

    通讯作者:

    柳小勤, 教授, 硕士生导师, liuxqsmile@gmail.com

  • 中图分类号: TB532

Research on Bearing Fault Signal Enhancement Using Generalized Sidelobe Canceller Algorithm

  • 摘要: 针对由于旋转机械故障噪声的复杂性,造成从传声器阵列所采集到的信息中很难提取到噪声源所包含的故障信息的问题, 利用波束成形对实验设备进行噪声源识别与定位,根据故障点位置信息将广义旁瓣抵消器算法(GSC)中的阻塞矩阵构造为具有指向性功能,而后利用其算法重构出故障点声信号,从该信号中提取故障信息,进行故障诊断。为验证该信号处理方法的有效性,通过仿真和实验得出该方法可以有效减少传统波束形成算法产生的信号泄露,提高输出信号的信噪比。
  • 图  1  波束形成原理图

    Figure  1.  Schematic diagram of beamforming

    图  2  广义旁瓣抵消器结构

    Figure  2.  Generalized sidelobe canceller structure

    图  3  传声器阵列位置

    Figure  3.  Microphone array positions

    图  4  原始的干净信号

    Figure  4.  Original clean signal

    图  5  传声器采集信号与Hilbert频谱图

    Figure  5.  Microphone-collected signals and Hilbert spectrogram

    图  6  故障点信号与Hilbert频谱图

    Figure  6.  Fault point signals and Hilbert spectrogram

    图  7  信号采集实验图

    Figure  7.  Signal acquisition experiment diagram

    图  8  故障声源定位图

    Figure  8.  Fault source localization diagram

    图  9  传声器采集信号与故障点输出信号

    Figure  9.  Microphone-collected signals and fault point output signals

    图  10  传声器接收信号与故障点输出信号频谱图

    Figure  10.  Microphone-received signals and fault point output signals spectrogram

    表  1  轴承故障结参数构

    Table  1.   Bearing fault parameters

    参数 数值
    外径/mm 52
    内径/mm 25
    宽度/mm 15
    滚动体接触角a/(°) 0
    滚动体个数/mm 12
    裂纹位置 滚道宽度方向
    下载: 导出CSV
  • [1] HUANG Q H, HU R, FANG Y. Real-valued MVDR beamforming using spherical arrays with frequency invariant characteristic[J]. Digital Signal Processing, 2016, 48: 239-245. doi: 10.1016/j.dsp.2015.09.021
    [2] SARUWATARI H, KAWAMURA T, NISHIKAWA T, et al. Blind source separation based on a fast-convergence algorithm combining ICA and beamforming[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(2): 666-678. doi: 10.1109/TSA.2005.855832
    [3] 宋辉, 刘加. 基于广义奇异值分解的通用旁瓣消除算法[J]. 数据采集与处理, 2011, 26(3): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201103002.htm

    SONG H, LIU J. GSVD-based generalized sidelobe canceller[J]. Journal of Data Acquisition & Processing, 2011, 26(3): 241-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201103002.htm
    [4] ANNOT S, BURSHTEIN D, WEINSTEIN E. Signal enhance-ment using beamforming and nonstationarity with applications to speech[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1614-1626. doi: 10.1109/78.934132
    [5] CHANG H, KIM Y, JEONG S. Target speech detection using gaussian mixture model of frequency bandwise power ratio for GSC-Based beamforming[J]. Journal of the Korea Institute of Information and Communication Engineering, 2015, 19(1): 61-68. doi: 10.6109/jkiice.2015.19.1.61
    [6] ZHANG S R, SHENG W X, HAN Y B, et al. Generalised reduced-rank structure for broadband space-time GSC and its fast algorithm[J]. Signal Processing, 2017, 133: 117-121. doi: 10.1016/j.sigpro.2016.10.006
    [7] MARKOVICH-GOLAN S, GANNOT S, KELLERMANN W. Combined LCMV-TRINICON beamforming for separating multiple speech sources in noisy and reverberant environments[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(2): 320-332. doi: 10.1109/TASLP.2016.2633806
    [8] MA X F, LU L, SHENG W X, et al. Adaptive interference nulling with pattern maintaining under mainlobe subspace and quadratic constraints[J]. IET Microwaves, Antennas & Propagation, 2018, 12(1): 40-48.
    [9] SU T, LI D Y, ZHANG S. An efficient subarray average delay multiply and sum beamformer algorithm in ultrasound imaging[J]. Ultrasonics, 2018, 84: 411-420. doi: 10.1016/j.ultras.2017.12.004
    [10] CHEUNG C C P, YU A C H, SALIMI N, et al. Multi-channel pre-beamformed data acquisition system for research on advanced ultrasound imaging methods[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(2): 243-253. doi: 10.1109/TUFFC.2012.2184
    [11] WU X H, ZHU W P, YAN J, et al. A spatial filtering based gridless DOA estimation method for coherent sources[J]. IEEE Access, 2018, 6: 56402-56410. doi: 10.1109/ACCESS.2018.2872578
    [12] GANNOT S, COHEN I. Speech enhancement based on the general transfer function GSC and postfiltering[J]. IEEE Transactions on Speech and Audio Processing, 2004, 12(6): 561-571. doi: 10.1109/TSA.2004.834599
    [13] KATAHIRA H, ONO N, MIYABE S, et al. Nonlinear speech enhancement by virtual increase of channels and maximum SNR beamformer[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016: 11. doi: 10.1186/s13634-015-0301-3
    [14] QIU S, SHENG W X, MA X F, et al. A robust reduced-rank monopulse algorithm based on variable-loaded MWF with spatial blocking broadening and automatic rank selection[J]. Digital Signal Processing, 2018, 78: 205-217. doi: 10.1016/j.dsp.2018.02.015
    [15] LARA P, OLINTO K D S, PETRAGLIA F R, et al. Exact analysis of the least-mean-square algorithm with coloured measurement noise[J]. Electronics Letters, 2018, 54(24): 1401-1403. doi: 10.1049/el.2018.6675
    [16] CARDENAS CABADA E, LECLERE Q, ANTONI J, et al. Fault detection in rotating machines with beamforming: spatial visualization of diagnosis features[J]. Mechanical Systems and Signal Processing, 2017, 97: 33-43. doi: 10.1016/j.ymssp.2017.04.018
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  48
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-19
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回