留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地铁车辆蜂窝式防爬器的结构设计及优化

陈佳明 朱涛 肖守讷 阳光武 杨冰

陈佳明,朱涛,肖守讷, 等. 地铁车辆蜂窝式防爬器的结构设计及优化[J]. 机械科学与技术,2023,42(5):657-664 doi: 10.13433/j.cnki.1003-8728.20200632
引用本文: 陈佳明,朱涛,肖守讷, 等. 地铁车辆蜂窝式防爬器的结构设计及优化[J]. 机械科学与技术,2023,42(5):657-664 doi: 10.13433/j.cnki.1003-8728.20200632
CHEN Jiaming, ZHU Tao, XIAO Shoune, YANG Guangwu, YANG Bing. Structure Design and Optimization of Honeycomb Anti-climbing Device for Subway Vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 657-664. doi: 10.13433/j.cnki.1003-8728.20200632
Citation: CHEN Jiaming, ZHU Tao, XIAO Shoune, YANG Guangwu, YANG Bing. Structure Design and Optimization of Honeycomb Anti-climbing Device for Subway Vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 657-664. doi: 10.13433/j.cnki.1003-8728.20200632

地铁车辆蜂窝式防爬器的结构设计及优化

doi: 10.13433/j.cnki.1003-8728.20200632
基金项目: 国家自然科学基金项目(52172409)
详细信息
    作者简介:

    陈佳明(1997−),硕士研究生,研究方向为轨道交通车辆被动安全性,413033354@qq.com

    通讯作者:

    朱涛,副研究员,博士生导师,zhutao034@swjtu.cn

  • 中图分类号: O313.4

Structure Design and Optimization of Honeycomb Anti-climbing Device for Subway Vehicles

  • 摘要: 为研究某型地铁车辆蜂窝式防爬器的吸能特性,根据轨道车辆耐撞性标准,对其吸能区域的结构进行合理设计,进而研究了不同薄壁壳厚度和蜂窝厚度下蜂窝式防爬器的吸能特性。利用四次多项式响应面代理模型拟合出其压缩力效率,并运用多岛遗传算法对其压缩力效率最大值进行寻优。结果表明:多级蜂窝式防爬器的比吸能和压缩力效率都明显优于相同质量下的单级蜂窝式防爬器和圆管式防爬器;薄壁壳壁厚对多级蜂窝式防爬器的撞击力影响较铝蜂窝壁厚更为显著;通过使用四次多项式响应面法和多岛遗传算法在设计空间中寻找到其最优的壁厚组合,压缩力效率比优化前提高了6.03%,相较圆管式防爬器提高了60.96%;该防爬器在压缩力效率和比吸能方面具有明显优势,应用于地铁车辆的吸能防爬环节将发挥其重要的作用。
  • 图  1  蜂窝式防爬器结构示意图

    图  2  蜂窝式防爬器截面示意图

    图  3  单个蜂窝块应力-应变曲线

    图  4  防爬器内部蜂窝有限元模型

    图  5  圆管式防爬器有限元模型

    图  6  防爬器撞击力对比

    图  7  蜂窝式和圆管式防爬器撞击力对比

    图  8  蜂窝式防爬器的内部变形情况

    图  9  压缩力效率$ \eta $响应面

    表  1  蜂窝式防爬器参数要求

    空间尺寸/mm吸能量/
    kJ
    平台载荷/
    kN
    垂向载荷/
    kN
    总行程/
    mm
    250 × 300 × 8006000500150500 ± 10
    下载: 导出CSV

    表  2  防爬器吸能特性对比

    防爬器
    类型
    峰值力/

    kN
    平台力/
    kN
    压缩力
    效率η
    吸能量/
    kJ
    比吸能/
    (kJ·kg−1
    多级蜂窝 692.7 489.3 0.7063 50.61 6.21
    单级蜂窝 617.0 329.9 0.5346 39.03 4.79
    圆管 608.6 166.2 0.2731 15.91 1.94
    下载: 导出CSV

    表  3  样本点的选取及其计算结果

    壁厚t/mm壁厚a/mm峰值力
    /
    kN
    平台力
    /
    kN
    有限元
    计算η
    代理模型计算η相对
    误差/%
    0.312.1681.87467.460.68560.69090.76
    0.312.3700.74469.580.67010.67911.33
    0.312.5773.49493.490.63800.68156.38
    0.312.7834.02533.690.63990.67665.42
    0.332.1734.50474.260.64570.67854.83
    0.332.3750.96498.330.66360.66660.45
    0.332.5814.41512.870.62970.66895.86
    0.332.7861.88557.180.64650.66412.65
    下载: 导出CSV

    表  4  多岛遗传算法的参数

    参数名数值参数名数值
    子群规模 40 交叉概率 0.8
    子群数 3 变异概率 0.01
    总规模 120 岛间迁移率 0.2
    进化代数 80 迁移间隔代数 5
    下载: 导出CSV

    表  5  多岛遗传算法优化结果

    壁厚t/mm壁厚a/mm峰值力
    /
    kN
    平台力
    /
    kN
    有限元
    计算η
    代理模型计算η相对误差/%
    0.312699.05489.040.69960.69540.60
    下载: 导出CSV
  • [1] 朱涛, 肖守讷, 杨超, 等. 机车车辆被动安全性研究综述[J]. 铁道学报, 2017, 39(5): 22-32.

    ZHU T, XIAO S N, YANG C, et al. State-of-the-art development of passive safety of rolling stocks[J]. Journal of the China Railway Society, 2017, 39(5): 22-32. (in Chinese)
    [2] WANG Z G, TIAN H Q, LU Z J, et al. High-speed axial impact of aluminum honeycomb-experiments and simulations[J]. Composites Part B:Engineering, 2014, 56: 1-8.
    [3] 马艳波. 有轨电车轻型防爬器结构优化设计[J]. 城市轨道交通研究, 2019, 22(1): 136-139.

    MA Y B. Optimum design of the tram light anticreeper structure[J]. Urban Mass Transit, 2019, 22(1): 136-139. (in Chinese)
    [4] 梁炬星. 一种新型切削式防爬器研究[J]. 机车电传动, 2018(3): 48-51.

    LIANG J X. Study of a new type of broaching anti-climber[J]. Electric Drive for Locomotives, 2018(3): 48-51. (in Chinese)
    [5] 岳伟玲, 王喜顺, 罗昌杰, 等. 圆孔拉刀式吸能器吸能特性的研究[J]. 机械设计与制造, 2014(7): 27-30.

    YUE W L, WANG X S, LUO C J, et al. Round broaching energy absorption characteristics of energy-absorbing device[J]. Machinery Design & Manufacture, 2014(7): 27-30. (in Chinese)
    [6] PENG Y, WANG S M, YAO S, et al. Crashworthiness analysis and optimization of a cutting-style energy absorbing structure for subway vehicles[J]. Thin-Walled Structures, 2017, 120: 225-235. doi: 10.1016/j.tws.2017.09.006
    [7] FORSBERG J, NILSSON L. Evaluation of response surface methodologies used in crashworthiness optimization[J]. International Journal of Impact Engineering, 2006, 32(5): 759-777. doi: 10.1016/j.ijimpeng.2005.01.007
    [8] 陈淑琴, 牛卫中, 文洮. 城轨车辆碰撞仿真与防爬器防爬能力的影响因素[J]. 机械强度, 2015, 37(5): 924-929.

    CHEN S Q, NIU W Z, WEN T. Simulation of urban rail vehicle crash and factors influncing anti-climbing ability of its anti-climber[J]. Journal of Mechanical Strength, 2015, 37(5): 924-929. (in Chinese)
    [9] DU D H, HE E M, LI F, et al. Using the hierarchical Kriging model to optimize the structural dynamics of rocket engines[J]. Aerospace Science and Technology, 2020, 107: 106248. doi: 10.1016/j.ast.2020.106248
    [10] 申爱民, 贺严松. 用于车辆非线性液压悬架的径向基函数神经网络控制优化与仿真[J]. 中国工程机械学报, 2020, 18(2): 148-152.

    SHEN A M, HE Y S. Optimization and simulation of RBF neural network control for vehicle nonlinear hydraulic suspension[J]. Chinese Journal of Construction Machinery, 2020, 18(2): 148-152. (in Chinese)
    [11] 侯淑娟. 薄壁构件的抗撞性优化设计[D]. 长沙: 湖南大学, 2007

    HOU S J. Optimization design of the thin-walled components with crashworthiness criterion[D]. Changsha: Hunan University, 2007. (in Chinese)
    [12] Technical Committee CEN/TC 256. EN 15227-2008 Crashworthiness requirements for railway vehicle bodies[S]. London: British Srandard Institution, 2008
    [13] JONES N. Structural impact[M]. New York: Cambridge University Press, 1989
    [14] 路先锋, 魏然. 基于正交试验设计的薄壁结构耐撞性优化设计[J]. 汽车实用技术, 2012(7): 7-11.

    LU X F, WEI R. Optimization for the crashworthiness of thin-walled structure based on orthogonal design of experiment[J]. Automobile Applied Technology, 2012(7): 7-11. (in Chinese)
    [15] 谢素超, 田红旗. 铁道车辆承载吸能结构优化研究[J]. 中国铁道科学, 2012, 33(6): 60-68.

    XIE S C, TIAN H Q. Optimization research on the energy absorbing bearing structure of railway vehicle[J]. China Railway Science, 2012, 33(6): 60-68. (in Chinese)
    [16] 李垚. 并联混合动力客车动力源参数匹配和优化[D]. 北京: 北京理工大学, 2016

    LI Y. The parameter matching and optimzation of power source for parallel hybrid electric bus[D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese)
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  133
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 网络出版日期:  2023-05-29
  • 刊出日期:  2023-05-25

目录

    /

    返回文章
    返回