留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多道多层堆焊成形数值模拟及残余应力研究

张雪 夏玉峰 滕海灏 彭梦霞 金力

张雪,夏玉峰,滕海灏, 等. 多道多层堆焊成形数值模拟及残余应力研究[J]. 机械科学与技术,2023,42(3):408-414 doi: 10.13433/j.cnki.1003-8728.20200615
引用本文: 张雪,夏玉峰,滕海灏, 等. 多道多层堆焊成形数值模拟及残余应力研究[J]. 机械科学与技术,2023,42(3):408-414 doi: 10.13433/j.cnki.1003-8728.20200615
ZHANG Xue, XIA Yufeng, TENG Haihao, PENG Mengxia, JIN Li. Study on Numerical Simulation and Residual Stress in Multi-channel and Multi-layer Surfacing Welding[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 408-414. doi: 10.13433/j.cnki.1003-8728.20200615
Citation: ZHANG Xue, XIA Yufeng, TENG Haihao, PENG Mengxia, JIN Li. Study on Numerical Simulation and Residual Stress in Multi-channel and Multi-layer Surfacing Welding[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 408-414. doi: 10.13433/j.cnki.1003-8728.20200615

多道多层堆焊成形数值模拟及残余应力研究

doi: 10.13433/j.cnki.1003-8728.20200615
基金项目: 国家自然科学基金项目(51775068)
详细信息
    作者简介:

    张雪(1996−),硕士,研究方向为塑性成型工艺、增材制造,1269764232@qq.com

    通讯作者:

    夏玉峰,教授,博士生导师,xyfeng@cqu.edu.cn

  • 中图分类号: TG146.3

Study on Numerical Simulation and Residual Stress in Multi-channel and Multi-layer Surfacing Welding

  • 摘要: 本文利用Marc有限元软件对高温合金的多道多层堆焊过程进行了数值模拟,讨论了堆焊厚度和堆焊路径对焊后残余应力的影响。结果表明,堆焊厚度的增加会导致横向残余应力峰值增大,并使堆焊层局部应力的方向改变,从而受到多向应力作用,因此堆焊层在满足使用要求的前提下 ,堆焊厚度不易过大。同时,由于受到前后焊缝温度的影响,堆焊层间存在应力释放的现象。另外,对比了“逐道堆焊”和“逐层堆焊”过程中焊后残余应力分布情况。“逐层堆焊”相比于“逐道堆焊”所产生的残余应力分布更加均匀,且残余应力峰值更小。
  • 图  1  有限元模型

    图  2  双椭球热源模型

    图  3  堆焊过程温度场变化

    图  4  焊缝表层中点热循环曲线

    图  5  不同堆焊厚度下横向残余应力分布截面图

    图  6  不同堆焊厚度下纵向残余应力分布截面图

    图  7  基体与堆焊层连接处横向残余应力分布

    图  8  沿堆焊层高度方向焊缝中心纵向残余应力分布

    图  9  不同堆焊路径温度场分布

    图  10  不同堆焊路径下横向残余应力分布

    图  11  不同堆焊路径横向残余应力峰值

    图  12  不同堆焊路径纵向残余应力分布

    图  13  不同堆焊路径纵向残余应力峰值

    表  1  铁基合金RMD248各元素的质量分数 %

    CMnSiPSNiCrMoAlWVFe
    0.251.610.720.0130.0041.55.511.690.211.040.24Bal.
    下载: 导出CSV

    表  2  钴基高温合金JLCo32各元素的质量分数 %

    CMnSiPSNiCrMoFeWCo
    0.21110.0160.0072.3527.58.751.580.1Bal.
    下载: 导出CSV

    表  3  基体材料RMD248和堆焊材料JLCo32性能参数

    材料温度
    /℃
    热膨胀
    系数/
    10−6−1
    弹性
    模量/
    GPa
    导热系数/
    [W·(m·℃)−1]
    比热容/
    [J·(kg·℃)−1]
    屈服
    强度/
    MPa
    JLCo32 20 11 231 14.8 456 660
    200 12.7 210 16.9 482 636
    400 13.9 197 18.9 522 602
    600 15 181 22.9 573 585
    1000 16.5 160 29.8 685 502
    1500 18.2 68 33.2 825 1
    RMD248 20 11.5 34.8 461 1253
    200 13.7 32.5 533 1250
    400 15.2 31.8 24 611 1146
    600 15.7 31.0 778 634
    1000 16.1 21.2 778 202
    1500 16.3 18.5 778 1
    下载: 导出CSV

    表  4  不同高度下的焊后残余应力峰值

    堆焊高度/mm横向残余应力/MPa纵向残余应力/MPa
    16520.3710.9
    18544.5716.6
    20574.0715.3
    22599.6715.8
    24626.0716.4
    下载: 导出CSV
  • [1] 张建生, 卢顺, 董旭刚, 等. 模具堆焊工艺中焊缝形状预测及工艺参数优化研究进展[J]. 锻压装备与制造技术, 2020, 55(3): 126-129.

    ZHANG J S, LU S, DONG X G, et al. Research progress of weld seam shape prediction and process parameter optimization in die surfacing process[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(3): 126-129. (in Chinese)
    [2] 王庆国. 模具的合金堆焊研究[J]. 铝加工, 2003(4): 44-45. doi: 10.3969/j.issn.1005-4898.2003.04.012

    WANG Q G. Study on bead welding for die[J]. Aluminium Fabrication, 2003(4): 44-45. (in Chinese) doi: 10.3969/j.issn.1005-4898.2003.04.012
    [3] SHEN L, ZHOU J, XIONG Y B, et al. Study on the combination of cobalt-based superalloy and ferrous alloys by bimetal-layer surfacing technology in refabrication of large hot forging dies[J]. Journal of Alloys and Compounds, 2017, 714: 338-347. doi: 10.1016/j.jallcom.2017.04.253
    [4] LU S, ZHOU J, ZHANG J S. Optimization of welding thickness on casting-steel surface for production of forging die[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 1411-1419. doi: 10.1007/s00170-014-6371-9
    [5] 卢顺. 铸钢基体双金属梯度制备锻模新方法基础及应用研究[D]. 重庆: 重庆大学, 2014

    LU S. The new method basis and application of the forging die with bimetal gradient layer on cast steel[D]. Chongqing: Chongqing University, 2014. (in Chinese)
    [6] 张建生. 大型超高强度钢模锻用锻模夹心层再制造方法基础及应用研究[D]. 重庆: 重庆大学, 2016

    ZHANG J S. Basis and application of multiple-layer sandwiched surfacing of large-scale forging die remanufacturing for ultra-high strength steel[D]. Chongqing: Chongqing University, 2016. (in Chinese)
    [7] XIA Y F, JIN L, CHENG Q, et al. A comparative study on the microstructures and mechanical properties between surfacing nickel-based superalloy and surfacing cobalt-based superalloy[J]. Materials Research Express, 2019, 6(9): 096589. doi: 10.1088/2053-1591/ab30b2
    [8] 张国政. 基于ANSYS的柱塞堆焊焊接的残余应力分析研究[D]. 西安: 西安石油大学, 2014

    ZHANG G Z. Oil well pipe material liquid-solid two-phase flow erosion-corrosion studies[D]. Xi'an: Xi'an Shiyou University, 2014. (in Chinese)
    [9] 安超. 单层熔丝积材残余应力分布规律及打击消除机理研究[D]. 重庆: 重庆大学, 2019

    AN C. Study on distribution of residual stress of single-layer fuse-adding and elimination of stress by hammer peening[D]. Chongqing: Chongqing University, 2019. (in Chinese)
    [10] 李冬林. 焊接应力和变形的数值模拟研究[D]. 武汉: 武汉理工大学, 2003

    LI D L. Numerical simulation research on welding stress and deformation[D]. Wuhan: Wuhan University of Technology, 2003. (in Chinese)
    [11] SUN J H, WU C S, CHEN M A. Numerical analysis of transient temperature field and keyhole geometry in controlled pulse key-holing plasma arc welding[J]. Numerical Heat Transfer, Part A:Applications, 2013, 64(5): 416-434. doi: 10.1080/10407782.2013.784142
    [12] SVANADZE M Z. The fundamental solution of the oscillation equations of the thermoelasticity theory of mixture of two elastic solids[J]. Journal of Thermal Stresses, 1996, 19(7): 633-648. doi: 10.1080/01495739608946199
    [13] MOCHIZUKI M, HAYASHI M, HATTORI T. Welding residual stress estimation by inherent strain analysis and thermal elastic plastic analysis and its verification using neutron diffraction measurement[J]. Transactions of the Japan Society of Mechanical Engineers. Part A, 1997, 63(612): 1675-1680. doi: 10.1299/kikaia.63.1675
    [14] 权国政, 施瑞菊, 刘乔, 等. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160. doi: 10.11896/cldb.19050113

    QUAN G Z, SHI R J, LIU Q, et al. Analysis and elimination of residual stress in single layer and single channel of arc fuse accumulation[J]. Materials Reports, 2020, 34(14): 14154-14160. (in Chinese) doi: 10.11896/cldb.19050113
    [15] 黄霜, 杨晓益, 陈辉, 等. 5A06铝合金扫描激光填丝焊接头变形及应力分析[J]. 焊接学报, 2020, 41(2): 87-92. doi: 10.12073/j.hjxb.20190220001

    HUANG S, YANG X Y, CHEN H, et al. Analysis of deformation and stress of scanning laser wire filling welded 5A06 aluminum alloy joint[J]. Transactions of the China Welding Institution, 2020, 41(2): 87-92. (in Chinese) doi: 10.12073/j.hjxb.20190220001
    [16] 张涛, 赵北君, 朱世富, 等. MSC Marc有限元软件在粉末成形中的应用[J]. 新疆大学学报(自然科学版), 2008, 25(4): 454-457.

    ZHANG T, ZHAO B J, ZHU S F, et al. Application of MSC Marc in powder-forming[J]. Journal of Xinjiang University (Natural Science Edition), 2008, 25(4): 454-457. (in Chinese)
    [17] SHI Q Y, LU A L, ZHAO H Y, et al. Effect of material properties at high temperature on efficiency and precision in numerical simulation for welding process[C]//International Conference on ComputationalEngineering Science, 2000: 655-660
    [18] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305. doi: 10.1007/BF02667333
    [19] 董杰. 金属堆焊成形工艺参数优化与实验研究[D]. 乌鲁木齐: 新疆大学, 2019

    DONG J. Optimization and experimental study on process parameters of metal overlay welding[D]. Urumqi: Xinjiang University, 2019. (in Chinese)
    [20] ZHAO H H, ZHANG G J, YIN Z Q, et al. Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping[J]. Journal of Materials Processing Technology, 2012, 212(1): 276-285. doi: 10.1016/j.jmatprotec.2011.09.012
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  65
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回