Fatigue Life Prediction of Cycloid Needle Wheel for Heavy Load RV Reducer
-
摘要: 以某型重载RV减速器中的摆线针轮为研究对象,利用有限元分析软件建立轮齿接触等效模型,得到了摆线轮齿面的接触应力分布并分析了其最大接触应力区,基于刚柔耦合动力学建模,得到了最大接触应力区的应力-时间历程。采用疲劳累计损伤理论,基于疲劳寿命专用仿真软件,以有限元结果和载荷谱为输入,分析了摆线针轮在相应外部循环载荷作用下的最终寿命,研究结果表明:摆线轮最大应力部位和危险部位在分度圆附近且靠近端面,最大应力为817 MPa,疲劳寿命为106.673次,等效寿命为5 233 h,为摆线轮的抗疲劳优化设计提供了参考价值。Abstract: Taking the cycloid needle wheel ofthe heavy load RV reducer as the research object, the finite element analysis software is used to establish the gear tooth contact equivalent model, and the contact stress distribution of the cycloid wheel tooth surface is obtained and its maximum contact stress area is analyzed. Based on the rigid-flexible coupling dynamics modeling, the stress-time history of the maximum contact stress area is obtained. In terms of the fatigue cumulative damage theory, the final life of the cycloid needle wheel under the corresponding external cyclic load is analyzed with the finite element results via special fatigue life simulation software and load spectrum as input. The results show that the maximum stress position of the cycloid wheel and the dangerous part is near the index circle and close to the end face, the maximum stress is 817 MPa, the fatigue life is 106.673 times, and the equivalent life is 5 233 h, which provides the reference value for the anti-fatigue optimization design of the cycloid wheel.
-
Key words:
- cycloid needle wheel /
- rigid-flexible coupling /
- load spectrum /
- fatigue life
-
表 1 啮合力及啮合应力
针齿
编号啮合
力/N接触应
力/MPa针齿
编号啮合
力/N接触应
力/MPa1 669 421.38 8 2149 737.15 2 2002 703.92 9 1956 703.38 3 2367 799.53 10 1716 645.62 4 2459 815.8 11 1428 594.61 5 2455 808.63 12 1092 521.53 6 2398 792.15 13 708 410.30 7 2296 764.54 14 279 239.92 表 2 GCr15钢的力学性能
材料
名称弹性模量/
GPa屈服强度/
MPa抗拉强度/
MPa泊松比 GCr15 210 1617 2310 0.3 -
[1] 杨玉虎, 张洁, 许立新. RV传动机构精度分析[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(7): 623-628.YANG Y H, ZHANG J, XU L X. Precision analysis of RV transmission mechanism[J]. Journal of Tianjin University (Science and Technology), 2013, 46(7): 623-628. (in Chinese) [2] XU L X, YANG Y H. Dynamic modeling and contact analysis of a cycloid-pin gear mechanism with a turning arm cylindrical roller bearing[J]. Mechanism and Machine Theory, 2016, 104: 327-349. doi: 10.1016/j.mechmachtheory.2016.06.018 [3] 王若宇, 高凤强, 刘暾东. RV减速器摆线轮齿廓修形建模与补偿研究[J]. 仪器仪表学报, 2018, 39(3): 81-88.WANG R Y, GAO F Q, LIU T D. Study on modification and compensation of tooth profile of RV reducer cycloidal gear[J]. Chinese Journal of Scientific Instrument, 2018, 39(3): 81-88. (in Chinese) [4] LI X, LI C Y, WANG Y W, et al. Analysis of a cycloid speed reducer considering tooth profile modification and clearance-fit output mechanism[J]. Journal of Mechanical Design, 2017, 139(3): 033303. doi: 10.1115/1.4035541 [5] 李威, 胡岳龙. RV减速器摆线齿轮热分析[J]. 哈尔滨工程大学学报, 2017, 38(10): 1560-1567.LI W, HU Y L. Thermal analysis of cycloidal gear for the RV reducer[J]. Journal of Harbin Engineering University, 2017, 38(10): 1560-1567. (in Chinese) [6] 郑钰馨, 奚鹰,卜王辉, 等. RV减速器5自由度纯扭转模型非线性特性分析[J]. 浙江大学学报(工学版), 2018, 52(11): 2098-2109 + 2119.ZHENG Y X, XI Y, BU W H, et al. Nonlinear characteristic analysis of 5-degree-of-freedom pure torsional model of RV reducer[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(11): 2098-2109 + 2119. (in Chinese) [7] CHEN Z M, OU Y, LONG S Y, et al. Vibration characteristics analysis of the new pin-cycloid speed reducer[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(2): 55. doi: 10.1007/s40430-018-1011-1 [8] 孟聪. RV减速器动力学特性分析[D]. 天津: 天津大学, 2017MENG C. Dynamic characteristic analysis of RV reducer[D]. Tianjin: Tianjin University, 2017. (in Chinese) [9] 王辉, 石照耀, 林家春, 等. 机器人用RV减速器多齿啮合特性研究[J]. 哈尔滨工程大学学报, 2020, 41(2): 227-234.WANG H, SHI Z Y, LIN J C, et al. Multi-tooth meshing performance of RV reducer for robot arms[J]. Journal of Harbin Engineering University, 2020, 41(2): 227-234. (in Chinese) [10] 汪久根, 柯梁亮. RV减速器振动特性分析[J]. 振动与冲击, 2020, 39(13): 57-63.WANG J G, KE L L. Vibration characteristics of a RV reducer[J]. Journal of Vibration and Shock, 2020, 39(13): 57-63. (in Chinese) [11] YANG W, TANG X L. Modelling and modal analysis of a hoist equipped with two-stage planetary gear transmission system[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2017, 231(4): 739-749. doi: 10.1177/1464419316684067 [12] 洪嘉振, 刘铸永. 刚柔耦合动力学的建模方法[J]. 上海交通大学学报, 2008, 42(11): 1922-1926.HONG J Z, LIU Z Y. Modeling methods of rigid-flexible coupling dynamics[J]. Journal of Shanghai Jiaotong University, 2008, 42(11): 1922-1926. (in Chinese) [13] 张红, 张方, 蒋祺, 等. 摆线针轮传动接触非线性疲劳寿命分析[J]. 国外电子测量技术, 2019, 38(1): 11-14.ZHANG H, ZHANG F, JIANG Q, et al. Nonlinear contact fatigue life analysis of pycloidal pinwheel drive[J]. Foreign Electronic Measurement Technology, 2019, 38(1): 11-14. (in Chinese) [14] 何卫东, 李力行, 李欣. 机器人用高精度RV减速器中摆线轮的优化新齿形[J]. 机械工程学报, 2000, 36(3): 51-55. doi: 10.3901/JME.2000.03.051HE W D, LI L X, LI X. New optimized tooth-profile of cycloidal gear of high precision RV reducer used in robot[J]. Chinese Journal of Mechanical Engineering, 2000, 36(3): 51-55. (in Chinese) doi: 10.3901/JME.2000.03.051 [15] 关天民, 张东生. 摆线针轮行星传动中反弓齿廓研究及其优化设计[J]. 机械工程学报, 2005, 41(1): 151-156. doi: 10.3901/JME.2005.01.151GUAN T M, ZHANG D S. Inverse arch-shaped teeth profile and its optimization in a cycloid drive[J]. Chinese Journal of Mechanical Engineering, 2005, 41(1): 151-156. (in Chinese) doi: 10.3901/JME.2005.01.151 [16] 姜年朝. ANSYS和ANSYS/FE-SAFE软件的工程应用及实例[M]. 南京: 河海大学出版社, 2006JIANG N C. Engineering application and examples of ANSYS and ANSYS/FE-SAFE software[M]. Nanjing: Hehai University Press, 2006.(in Chinese) [17] 《机械工程材料性能数据手册》编委会. 机械工程材料性能数据手册[M]. 北京: 机械工业出版社, 1995Mechanical engineering material performance data handbook[M]. Beijing: Mechanical Industry Press, 1995 [18] 李伟. GCr15钢超高周疲劳行为的研究[D]. 四川: 西南交通大学, 2007LI W. Fatigue behavior of GCr15 steel in gigacycle regime[D]. Sichuan: Southwest Jiaotong University, 2007. (in Chinese) [19] CUI C, ZHANG Q H, BAO Y. Fatigue life evaluation of welded joints in steel bridge considering residual stress[J]. Journal of Constructional Steel Research, 2019, 153: 509-518. doi: 10.1016/j.jcsr.2018.11.003 [20] GAO H Y, HUANG H Z, LV Z Q, et al. An improved Corten-Dolan's model based on damage and stress state effects[J]. Journal of Mechanical Science and Technology, 2015, 29(8): 3215-3223. doi: 10.1007/s12206-015-0721-x [21] SUSMEL L, TOVO R, LAZZARIN P. The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view[J]. International Journal of Fatigue, 2005, 27(8): 928-943. doi: 10.1016/j.ijfatigue.2004.11.012 [22] 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003YAO W X. Fatigue life prediction of structures[M]. Beijing: National Defense Industry Press, 2003. (in Chinese) [23] 叶南海, 邓鑫, 何韵, 等. 谐波柔轮力学分析与疲劳寿命研究[J]. 湖南大学学报(自然科学版), 2018, 45(2): 18-25.YE N H, DENG X, HE Y, et al. Study on mechanical analysis and fatigue life of harmonic flexspline[J]. Journal of Hunan University (Natural Sciences), 2018, 45(2): 18-25. (in Chinese) [24] 向东, 蒋李, 沈银华, 等. 风电齿轮箱在随机风载下的疲劳损伤计算模型[J]. 振动与冲击, 2018, 37(11): 115-123.XIANG D, JIANG L, SHEN Y H, et al. Fatigue damage calculation model for wind turbine gearboxes under random wind loads[J]. Journal of Vibration and Shock, 2018, 37(11): 115-123. (in Chinese) -