留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔射流式通风的流场特性分析

郭昊 方珍龙 熊庭 曾凡栋

郭昊,方珍龙,熊庭, 等. 多孔射流式通风的流场特性分析[J]. 机械科学与技术,2023,42(3):352-357 doi: 10.13433/j.cnki.1003-8728.20200586
引用本文: 郭昊,方珍龙,熊庭, 等. 多孔射流式通风的流场特性分析[J]. 机械科学与技术,2023,42(3):352-357 doi: 10.13433/j.cnki.1003-8728.20200586
GUO Hao, FANG Zhenlong, XIONG Ting, ZENG Fandong. Analysis of Flow Field Characteristics of Multi-nozzle Jet Ventilation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 352-357. doi: 10.13433/j.cnki.1003-8728.20200586
Citation: GUO Hao, FANG Zhenlong, XIONG Ting, ZENG Fandong. Analysis of Flow Field Characteristics of Multi-nozzle Jet Ventilation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(3): 352-357. doi: 10.13433/j.cnki.1003-8728.20200586

多孔射流式通风的流场特性分析

doi: 10.13433/j.cnki.1003-8728.20200586
基金项目: 国家自然科学基金青年项目(51706161,51709210)与武汉理工大学三亚科教创新园开放基金项目(2020KF0039)
详细信息
    作者简介:

    郭昊(1996−),硕士研究生,研究方向为射流技术,xyguohao@163.com

    通讯作者:

    熊庭,副教授,bearmos@163.com

  • 中图分类号: O35;TP6

Analysis of Flow Field Characteristics of Multi-nozzle Jet Ventilation

Funds: The project supported by the (12345678)and (9876543)
  • 摘要: 为了分析多孔射流风机作用下风场的流场特性,文中采用CFD方法,对多孔射流式风场模型内部流场进行了数值模拟,对比分析了不同喷嘴数量及排布方式对流场性能的影响,并引入涡动力学理论,分析了流场内涡结构的分布发展规律及其对流体掺混的影响。结果表明:喷嘴的数量及排布方式对流场性能有显著影响,外围喷嘴会对中心喷嘴的流动起到限制作用;流向涡对流体掺混效果的作用比展向涡大,在涡量一定的情况下,流向涡尺度越大、衰减越快,流体间的混合效果越好,流场稳定性越高。流场内速度及涡动力学分布表明,流场稳定性随着喷嘴数量的增加而显著提高,因此在保证经济性的前提下应尽量采用数量多的喷嘴排布方式。
  • 图  1  测试风场模型示意图

    图  2  模型网格划分

    图  3  壁面静压分布对比图

    图  4  风场纵向截面速度云图

    图  5  流场中轴线速度曲线

    图  6  不同模型流向涡分布

    图  7  不同模型展向涡分布

    图  8  流场涡结构变化规律

    表  1  喷嘴排布参数

    模型喷嘴排布
    方式
    喷嘴直径
    D/m
    喷嘴间距
    L/m
    13 × 30.61.5
    24 × 40.61.5
    35 × 50.40.9
    下载: 导出CSV

    表  2  喷嘴速度设置

    模型外圈喷嘴速度
    ${v_1} /( {{\rm{m}} \cdot {{\rm{s}}^{ - 1} } } )$
    内圈喷嘴速度
    ${v_2}/( {{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} ) $
    13030
    22121
    32823
    下载: 导出CSV
  • [1] 师虹. 基于CFD的特长公路隧道通风排烟数值模拟研究[D]. 西安: 长安大学, 2019

    SHI H. Numerical simulation of ventilation and smoke exhaust of special long highway tunnel based on CFD[D]. Xi′an: Chang′an University, 2019. (in Chinese)
    [2] 李炎锋, 崔彦强, 常琳, 等. 地下车库射流诱导通风的数值模拟研究[J]. 广西大学学报(自然科学版), 2017, 42(1): 365-370. doi: 10.13624/j.cnki.issn.1001-7445.2017.0365

    LI Y F, CUI Y Q, CHANG L, et al. Numerical simulation of jet ventilation for underground garage[J]. Journal of Guangxi University (Natural Science Edition), 2017, 42(1): 365-370. (in Chinese) doi: 10.13624/j.cnki.issn.1001-7445.2017.0365
    [3] 曹学明, 张忠泽. 公路隧道纵向射流通风数值模拟与分析[J]. 制冷与空调, 2011, 25(6): 558-561.

    CAO X M, ZHANG Z Z. The numerical simulation and analysis of road tunnel longitudinal ventilation[J]. Refrigeration and Air Conditioning, 2011, 25(6): 558-561. (in Chinese)
    [4] 胡康, 邵雪. 基于CFD对公路隧道纵向射流通风系统的研究[J]. 南方能源建设, 2020, 7(S2): 131-136. doi: 10.16516/j.gedi.issn2095-8676.2020.S2.021

    HU K, SHAO X. Research on longitudinal jet ventilation system of highway tunnel based on CFD[J]. Southern Energy Construction, 2020, 7(S2): 131-136. (in Chinese) doi: 10.16516/j.gedi.issn2095-8676.2020.S2.021
    [5] RAIZNER M, RINSKY V, GROSSMAN G, et al. Heat transfer and flow field measurements of a pulsating round jet impinging on a flat heated surface[J]. International Journal of Heat and Fluid Flow, 2019, 77: 278-287. doi: 10.1016/j.ijheatfluidflow.2019.04.010
    [6] 朱伶枫, 张延玲, 朱荣, 等. 超音速射流流场湍流模型适应性研究[J]. 太原理工大学学报, 2015, 46(1): 49-54. doi: 10.16355/j.cnki.issn1007-9432tyut.2015.01.010

    ZHU L F, ZHANG Y L, ZHU R, et al. Study on adaptability of supersonic jet flow turbulence model[J]. Journal of Taiyuan University of Technology, 2015, 46(1): 49-54. (in Chinese) doi: 10.16355/j.cnki.issn1007-9432tyut.2015.01.010
    [7] TANI H, TERAMOTO S, OKAMOTO K. High-speed observations of cryogenic single and coaxial jets under subcritical and transcritical conditions[J]. Experiments in Fluids, 2015, 56(4): 85. doi: 10.1007/s00348-015-1956-0
    [8] NAQAVI I Z, TUCKER P G, LIU Y. Large-eddy simulation of the interaction of wall jets with external stream[J]. International Journal of Heat and Fluid Flow, 2014, 50: 431-444. doi: 10.1016/j.ijheatfluidflow.2014.10.014
    [9] 龙新平, 姚鑫, 杨雪龙. 多孔喷嘴射流泵流动模拟与涡结构分析[J]. 排灌机械工程学报, 2012, 30(2): 136-140. doi: 10.3969/j.issn.1674-8530.2012.02.003

    LONG X P, YAO X, YANG X L. Flow simulation and vortex structure analysis of multi-nozzle jet pumps[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(2): 136-140. (in Chinese) doi: 10.3969/j.issn.1674-8530.2012.02.003
    [10] 梁博健, 高殿荣. 高压扇形喷嘴结构参数的优化[J]. 排灌机械工程学报, 2020, 38(1): 69-75. doi: 10.3969/j.issn.1674-8530.18.0091

    LIANG B J, GAO D R. Optimization of structural parameters of fan-shaped high-pressure nozzle[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(1): 69-75. (in Chinese) doi: 10.3969/j.issn.1674-8530.18.0091
    [11] 金煜, 冷先银, 陈广平, 等. 内/外交叉孔喷嘴内部和近场流动特性的试验[J]. 内燃机工程, 2018, 39(2): 35-42. doi: 10.13949/j.cnki.nrjgc.2018.02.006

    JIN Y, LENG X Y, CHEN G P, et al. An experimental study on the internal and near-field flow characteristics of internal/external intersecting-hole nozzles[J]. Chinese Internal Combustion Engine Engineering, 2018, 39(2): 35-42. (in Chinese) doi: 10.13949/j.cnki.nrjgc.2018.02.006
    [12] 张福波, 张永臣, 杨丽娟. 圆形喷嘴内部结构对射流冲击换热性能的影响[J]. 东北大学学报(自然科学版), 2018, 39(9): 1257-1261. doi: 10.12068/j.issn.1005-3026.2018.09.009

    ZHANG F B, ZHANG Y C, YANG L J. Influence of internal structure of round jet nozzle on heat transfer performance[J]. Journal of Northeastern University (Natural Science), 2018, 39(9): 1257-1261. (in Chinese) doi: 10.12068/j.issn.1005-3026.2018.09.009
    [13] 王卓. 静水条件下倾斜射流的Realizable k-ε和RNG k-ε数值模拟研究[J]. 人民珠江, 2017, 38(5): 53-57.

    WANG Z. Numerical simulation of realizable k-ε and RNG k-ε for inclined jets in under hydrostatic conditions[J]. Pearl River, 2017, 38(5): 53-57. (in Chinese)
    [14] 芦绮玲, 陈刚. 多孔紊动射流的数值模拟与实验研究进展[J]. 水科学进展, 2008, 19(1): 137-146. doi: 10.3321/j.issn:1001-6791.2008.01.023

    LU Q L, CHEN G. Development in numerical and experimental study of the multiple jets[J]. Advances In Water Science, 2008, 19(1): 137-146. (in Chinese) doi: 10.3321/j.issn:1001-6791.2008.01.023
    [15] 李少华, 袁斌, 刘利献, 等. 多孔横向紊动射流涡量场的数值分析[J]. 中国电机工程学报, 2007, 27(23): 100-104. doi: 10.3321/j.issn:0258-8013.2007.23.019

    LI S H, YUAN B, LIU L X, et al. Numerical investigation on the vortices of multiple turbulent jet in crossflow[J]. Proceedings of the CSEE, 2007, 27(23): 100-104. (in Chinese) doi: 10.3321/j.issn:0258-8013.2007.23.019
    [16] YANG X, LONG X, YAO X. Numerical investigation on the mixing process in a steam ejector with different nozzle structures[J]. International Journal of Thermal Sciences, 2012, 56: 95-106. doi: 10.1016/j.ijthermalsci.2012.01.021
    [17] NARABAYASHI T, YAMAZAKI Y, KOBAYASHI H, et al. Flow analysis for single and multi-nozzle jet pump[J]. JSME International Journal Series B Fluids and Thermal Engineering, 2006, 49(4): 933-940. doi: 10.1299/jsmeb.49.933
    [18] HU H, KOBAYASHI T. Vortex structures downstream a lobed nozzle/mixer[J]. Journal of Aerospace Power, 2008, 23(7): 1266-1278.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  85
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回