留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

限矩型液力偶合器内部两相流动数值模拟

唐欣怡 李志鹏 王阳 李铁梅 孙军红

唐欣怡, 李志鹏, 王阳, 李铁梅, 孙军红. 限矩型液力偶合器内部两相流动数值模拟[J]. 机械科学与技术, 2023, 42(1): 59-66. doi: 10.13433/j.cnki.1003-8728.20200573
引用本文: 唐欣怡, 李志鹏, 王阳, 李铁梅, 孙军红. 限矩型液力偶合器内部两相流动数值模拟[J]. 机械科学与技术, 2023, 42(1): 59-66. doi: 10.13433/j.cnki.1003-8728.20200573
TANG Xinyi, LI Zhipeng, WANG Yang, LI Tiemei, SUN Junhong. Numerical Simulation on Two-phase Flow Field in Torque Limited Hydrodynamic Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 59-66. doi: 10.13433/j.cnki.1003-8728.20200573
Citation: TANG Xinyi, LI Zhipeng, WANG Yang, LI Tiemei, SUN Junhong. Numerical Simulation on Two-phase Flow Field in Torque Limited Hydrodynamic Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 59-66. doi: 10.13433/j.cnki.1003-8728.20200573

限矩型液力偶合器内部两相流动数值模拟

doi: 10.13433/j.cnki.1003-8728.20200573
详细信息
    作者简介:

    唐欣怡(1997-), 硕士研究生, 研究方向为流体机械及工程, tangxinyi0722@163.com

    通讯作者:

    李志鹏, 教授, 硕士生导师, 1379448@163.com

  • 中图分类号: TH137.331

Numerical Simulation on Two-phase Flow Field in Torque Limited Hydrodynamic Coupling

  • 摘要: 限矩型液力偶合器内部存在着复杂的气液两相流动,为掌握限矩型液力偶合器内部流场分布及转矩特性变化,分别采用VOF(Volume of fluid)与Mixture两相流模型对偶合器内部流场进行模拟计算,并对其转矩特性进行监测。通过VOF模型获得的偶合器内部气液两相分布情况和通过Mixture模型得到的其内部压力速度分布图能够较好地反映偶合器内部流场变化情况。仿真结果表明:VOF模型能够较好地模拟出偶合器因流态转变而造成的转矩跌落情况,Mixture模型不能模拟出该效果,但在高、低转速比工况下模拟的转矩值仍具有一定参考意义。
  • 图  1  几何模型

    图  2  泵轮和涡轮流道的interface示意图

    图  3  50%充液率下初始化图

    图  4  转矩监测曲线

    图  5  3种充液率下轴向截面气液两相体积分布云图(i=0)

    图  6  3种充液率下轴向截面压力分布云图(i=0)

    图  7  3种充液率下轴向截面速度矢量图(i=0)

    图  8  3种充液率下轴向截面气液两相体积分布云图(i=0.6)

    图  9  3种充液率下轴向截面压力分布云图(i=0.6)

    图  10  3种充液率下轴向截面速度矢量图(i=0.6)

    图  11  3种充液率下轴向截面气液两相体积分布云图(i=0.96)

    图  12  3种充液率下轴向截面压力分布云图(i=0.96)

    图  13  3种充液率下轴向截面速度矢量图(i=0.96)

    图  14  转矩特性曲线

  • [1] 初长祥, 马文星. 工程机械液压与液力传动系统: 液压卷[M]. 北京: 化学工业出版社, 2015

    CHU C X, MA W X. Hydraulic Pressure of construction machinery and hydraulic drive system[M]. Beijing: Chemical Industry Press, 2015 (in Chinese)
    [2] HAMPEL U, HOPPE D, DIELE K H, et al. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2-3): 85-90 doi: 10.1016/j.flowmeasinst.2004.10.001
    [3] DA SILVA M J, LU Y, SVHNEL T, et al. Autonomous planar conductivity array sensor for fast liquid distribution imaging in a fluid coupling[J]. Sensors and Actuators A: Physical, 2008, 147(2): 508-515 doi: 10.1016/j.sna.2008.06.019
    [4] 李兴忠, 胡春玉, 卢秀泉. 典型工况下液力偶合器内流场PIV试验[J]. 实验室研究与探索, 2019, 38(5): 20-22+41 https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201905007.htm

    LI X Z, HU C Y, LU X Q. Research on piv test of hydraulic coupling under typical working conditions[J]. Research and Exploration in Laboratory, 2019, 38(5): 20-22+41 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201905007.htm
    [5] 卢秀泉, 胡春玉, 柴亚龙, 等. 动态调速工况液力偶合器瞬态流场PIV试验[J]. 华中科技大学学报(自然科学版), 2019, 47(4): 50-54 https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201904009.htm

    LU X Q, HU C Y, CHAI Y L, et al. Experiment of transient flow field of hydrodynamic coupling under dynamic speed regulation with PIV[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(4): 50-54 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201904009.htm
    [6] 马文星, 何延东, 刘春宝. 液力传动研究现状分析与展望[J]. 农业机械学报, 2008, 39(7): 51-55 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200807013.htm

    MA W X, HE Y D, LIU C B. Situation and prospects of research on hydrodynamic transmission[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(7): 51-55 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200807013.htm
    [7] BAI L, MITRA N K, FIEBIG M. Computation of unsteady 3D turbulent flow and torque transmission in fluid couplings[C]//Proceedings of the Fourteenth International Conference on Numerical Methods in Fluid Dynamics. Bangalore, India: Springer, 1995: 435-440
    [8] BAI L, FIEBIG M, MITRA N K. Numerical analysis of turbulent flow in fluid couplings[J]. Journal of Fluids Engineering, 1997, 119(3): 569-576 doi: 10.1115/1.2819282
    [9] HUITENGA H, MITRA N K. Improving startup behavior of fluid couplings through modification of runner geometry: part Ⅱ-modification of runner geometry and its effects on the operation characteristics[J]. Journal of Fluids Engineering, 2000, 122(4): 689-693 doi: 10.1115/1.1319502
    [10] HAMPEL U, HOPPE D, DIELE K H, et al. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2-3): 85-90 doi: 10.1016/j.flowmeasinst.2004.10.001
    [11] HUR N, KWAK M, LEE W J, et al. Unsteady flow analysis of a two-phase hydraulic coupling[J]. AIP Conference Proceedings, 2016, 1738(1): 030034
    [12] HUR N, KWAK M, MOSHFEGHI M, et al. Numerical flow analyses of a two-phase hydraulic coupling[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2307-2317 doi: 10.1007/s12206-017-0427-3
    [13] 张德生, 赵继云, 刘立宝, 等. 基于CFD的桃形腔偶合器流场分析及结构优化[J]. 中国矿业大学学报, 2010, 39(5): 687-692 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201005012.htm

    ZHANG D S, ZHAO J Y, LIU L B, et al. Flow field analysis and structure optimization of peach shaped chamber hydrodynamic coupling based on CFD[J]. Journal of China University of Mining & Technology, 2010, 39(5): 687-692 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201005012.htm
    [14] 胡春玉. 腔型结构参数对大功率液力偶合器的性能影响与特性预测[D]. 长春: 吉林大学, 2020

    HU C Y. The influence of cavity structure parameters on the performance and characteristic prediction of high-power hydraulic coupler[D]. Changchun: Jilin University, 2020 (in Chinese)
    [15] 赵继云, 张德生. 液力偶合器气液界面追踪数值模拟[J]. 机械工程学报, 2012, 48(4): 182-187 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201204027.htm

    ZHAO J Y, ZHANG D S. Numerical simulation of water-air interface tracking in hydrodynamic coupling[J]. Journal of Mechanical Engineering, 2012, 48(4): 182-187 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201204027.htm
    [16] 王阳, 李志鹏. 限矩型液力偶合器流场特性预测[J]. 机械科学与技术, 2020, 39(12): 1865-1871 doi: 10.13433/j.cnki.1003-8728.20200023

    WANG Y, LI Z P. Predicting flow field characteristics of torque-limited hydrodynamic coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1865-1871 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200023
    [17] 卢秀泉, 沈小文, 袁哲, 等. 大功率限矩型液力偶合器耦合流场特性预测[J]. 华中科技大学学报(自然科学版), 2015, 43(11): 11-15 https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201511003.htm

    LU X Q, SHEN X W, YUAN Z. Performance prediction for coupled field of high-power torque limited hydrodynamic coupling[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(11): 11-15 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201511003.htm
  • 加载中
图(14)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  69
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-30
  • 刊出日期:  2023-01-25

目录

    /

    返回文章
    返回