Gait Planning and Analysis of Amphibious Turtle Inspired Robot
-
摘要: 针对清淤机器人移动困难、稳定性差等问题,参考海龟的身体结构和爬行动作,设计出了一种两栖仿海龟机器人。在介绍机器人结构的基础上,利用D-H方法对机器人进行运动学分析,建立并求解了支腿的变换矩阵和运动学方程; 规划了两种仿海龟爬行步态,根据机器人结构规划了电推缸的行程空间,并对足端轨迹和爬行步态做以优化; 在ADAMS中进行运动仿真,分析了机体的位移和速度变化曲线。结果表明,优化后的步态可以大大提高机器人的爬行速度和稳定性。Abstract: In order to solve the problems such as difficulty in moving and poor stability of the dredging robot, a kind of amphibious turtle inspired robot was designed by referring to the body structure and crawling movement of turtles. Based on the introduction of the structure of the robot, the D-H method was used to analyze the kinematics of the robot, and the transformation matrix and kinematics equation of the leg were established and solved. Two kinds of crawling gaits were planned. According to the robot structure, the travel space of the electric push cylinder was planned, and the foot trajectory and crawling gait were optimized. The motion simulation was carried out in ADAMS, and the curves of displacement and velocity of the airframe were analyzed. The results show that the optimized gait can greatly improve the crawling speed and stability of the robot.
-
Key words:
- turtle inspired robot /
- kinematics analysis /
- D-H method /
- gait planning /
- trajectory planning /
- ADAMS
-
表 1 两栖仿海龟机器人的主要结构参数
名称 尺寸/mm 质量/kg 机体 (长×宽×高)960×608×245 50.0 支撑腿 (直径×长度)28×430 0.6 沼泽轮(单个) (直径×宽度)150×42 1.0 支腿缸 (最短安装距×最大行程)250×150 1.0 转腿缸 (最短安装距×最大行程)210×110 0.8 表 2 UA轮胎参数表
参数名称 参数值 参数名称 参数值 单个质量m/kg 1 动摩擦因数Umin 0.74 卸载半径r/mm 75 滚动阻力因数f 0.015 宽度L/mm 42 外倾刚度Cγ/(N·rad-1) 4.0×103 纵横比 0.6 径向刚度Kz/Nm 9.2×105 侧偏刚度Cα/(N·rad-1) 4.6×103 径向阻尼Cz/[N·(m·s-1)-1] 6×107 静摩擦因数Umax 0.94 纵向滑移刚度Cz/Nm 3.0×103 -
[1] PEREIRA P, BARCELÓ D, PANAGOS P. Soil and water threats in a changing environment[J]. Environmental Research, 2020, 186: 109501 doi: 10.1016/j.envres.2020.109501 [2] 钟志生, 张亚楠, 郑选斌. 中国疏浚装备标准化概述[J]. 水运工程, 2020(11): 48-52 https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC202011008.htmZHONG Z S, ZHANG Y N, ZHENG X B. Overview of dredging equipment standardization in China[J]. Port & Waterway Engineering, 2020(11): 48-52 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC202011008.htm [3] TOWNSHEND A. Watermaster dredge works to clean Colombian river[J]. International Dredging Review, 2015, 34(1): 30-31 [4] KAWAMURA Y, SHIMOYA J, YOSHIDA E, et al. Design and development of an amphibious robot with fin actuators[C]//Proceedings of the Twentieth International Offshore and Polar Engineering Conference. Beijing: ISOPE, 2010: 318-322 [5] LOW K H, ZHOU C L, ONG T W, et al. Modular design and initial gait study of an amphibian robotic turtle[C]//Proceedings of 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO). Sanya: IEEE, 2007: 535-540, doi: 10.1109/ROBIO.2007.4522219 [6] 杨清海, 喻俊志, 谭民, 等. 两栖仿生机器人研究综述[J]. 机器人, 2007, 29(6): 601-608 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR200706015.htmYANG Q H, YU J Z, TAN M, et al. Amphibious biomimetic robots: a review[J]. Robot, 2007, 29(6): 601-608 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR200706015.htm [7] 孙安, 高雪官, 吴斌. 四足两栖仿生机器龟的研究[J]. 机械, 2004, 31(5): 12-13+16 https://www.cnki.com.cn/Article/CJFDTOTAL-MECH200405003.htmSUN A, GAO X G, WU B. Bionic turtle[J]. Machinery, 2004, 31(5): 12-13+16 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH200405003.htm [8] 黄亮, 管贵森, 徐文福, 等. 面向数字舞台表演的海龟机器人系统研制[J]. 哈尔滨工业大学学报, 2017, 49(7): 20-26 https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201707003.htmHUANG L, GUAN G S, XU W F, et al. Development of a turtle robot for performance at digital stage[J]. Journal of Harbin Institute of Technology, 2017, 49(7): 20-26 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201707003.htm [9] 张兵, 郑彦宁, 徐文福, 等. 基于舞台表演用海龟机器人四足协调步态规划[J]. 仪器仪表学报, 2017, 38(3): 545-551 https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201703005.htmZHANG B, ZHENG Y N, XU W F, et al. Coordinated quadrupedal gait planning of turtle robot for performing at digital stage[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 545-551 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201703005.htm [10] 韩清凯, 罗忠. 机械系统多体动力学分析、控制与仿真[M]. 北京: 科学出版社, 2010HAN Q K, LUO Z. Multi-body dynamics analysis, control and simulation of mechanical systems[M]. Beijing: Science Press, 2010 (in Chinese) [11] 刘玲, 靳伍银, 王洪建. 六足仿生机器人自主爬行步态设计与仿真分析研究[J]. 机械科学与技术, 2021, 40(12): 1885-1891 doi: 10.13433/j.cnki.1003-8728.20200298LIU L, JIN W Y, WANG H J. Study on walking gait design and simulation analysis of hexapod bionic robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(12): 1885-1891 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200298 [12] 张楠, 姜文通, 牛宝山, 等. 轮腿式自动引导小车结构设计与行走步态规划[J]. 机械科学与技术, 2021, 40(2): 211-217 doi: 10.13433/j.cnki.1003-8728.20200047ZHANG N, JIANG W T, NIU B S, et al. Structural design and walking gait planning of wheel-legged AGV[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 211-217 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200047 [13] 阮鹏, 俞志伟, 张昊, 等. 基于ADAMS的仿壁虎机器人步态规划及仿真[J]. 机器人, 2010, 32(4): 499-504+509 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201004009.htmRUAN P, YU Z W, ZHANG H, et al. Gait planning and simulation of gecko inspired robot based on ADAMS[J]. Robot, 2010, 32(4): 499-504+509 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201004009.htm [14] 杨佳欣. 绳传动四足爬行机器人的结构设计与仿真分析[D]. 南京: 南京航空航天大学, 2018YANG J X. Simulation and design of wire-driven quadruped crawling robot[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese) [15] 李军. ADAMS实例教程[M]. 北京: 北京理工大学出版社, 2002LI J. ADAMS example tutorial[M]. Beijing: Beijing Institute of Technology Press, 2002 (in Chinese) -