留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿竹设计在无人机起落架结构中的应用

赵知辛 郭强 黄鸣远 刘家良

赵知辛,郭强,黄鸣远, 等. 仿竹设计在无人机起落架结构中的应用[J]. 机械科学与技术,2021,40(11):1798-1804 doi: 10.13433/j.cnki.1003-8728.20200565
引用本文: 赵知辛,郭强,黄鸣远, 等. 仿竹设计在无人机起落架结构中的应用[J]. 机械科学与技术,2021,40(11):1798-1804 doi: 10.13433/j.cnki.1003-8728.20200565
ZHAO Zhixin, GUO Qiang, HUANG Mingyuan, LIU Jialiang. Application of Imitation Bamboo Design in Unmanned Aerial Vehicle Landing Gear Structures[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1798-1804. doi: 10.13433/j.cnki.1003-8728.20200565
Citation: ZHAO Zhixin, GUO Qiang, HUANG Mingyuan, LIU Jialiang. Application of Imitation Bamboo Design in Unmanned Aerial Vehicle Landing Gear Structures[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1798-1804. doi: 10.13433/j.cnki.1003-8728.20200565

仿竹设计在无人机起落架结构中的应用

doi: 10.13433/j.cnki.1003-8728.20200565
基金项目: 陕西省科技厅重点研发计划项目(2019GY-068)与陕西省教育厅专项科研计划项目(16JK1147)
详细信息
    作者简介:

    赵知辛(1973−),讲师,博士,研究方向为有限元分析,49989803@qq.com

  • 中图分类号: V226+.1

Application of Imitation Bamboo Design in Unmanned Aerial Vehicle Landing Gear Structures

  • 摘要: 应用于无人机的滑撬式起落架多使用弓形梁结构,几何特征上梁是一种细长弹性体,与竹子结构(具有较大细长比)相似。为了提高滑撬式起落架的结构性能,首先参考竹子的微观结构,设计了三种类维管束的仿生圆管,采用有限元法对仿生管轴向与径向碰撞吸能进行了仿真与计算;其次通过有限元静力学与动力学分析,对比了原结构与仿竹结构在相同载荷下的力学性能。仿真结果表明:静力学分析中,仿竹结构的最大应力相较于原结构降低约44%,并改善了弓形梁与滑筒连接处应力集中现象;动力学分析通过多工况模拟了起落架可能出现的平稳着陆与非平稳着陆,采用仿竹结构多工况的最大应力平均降低约22%,有效地提升了着陆性能。
  • 图  1  竹子微观截面

    图  2  仿生截面

    图  3  轴向冲击特性曲线

    图  4  径向冲击特性曲线

    图  5  冲击特性曲线

    图  6  起落架结构图

    图  7  设计结构

    图  8  有限元静力学分析云图

    图  9  动力学分析结果对比图

    图  10  竹节结构

    表  1  材料属性

    材料 泊松比 密度/
    (g·cm−3)
    弹性
    模量/GPa
    屈服
    极限/MPa
    6063铝 0.33 2.7 68 170
    20CrMo钢 0.3 7.85 205 685
    下载: 导出CSV
  • [1] 景岩. 无人机发展综述[J]. 才智, 2013(16): 185

    JING Y. Summary of the development of UAV[J]. Intelligence, 2013(16): 185 (in Chinese)
    [2] 戴蓓. 某无人机起落架改型设计[D]. 南京: 南京航空航天大学, 2016

    DAI B. Modification design of A UAV landing gear[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese)
    [3] TUGAY B, TÜRKMEN H. Structural optimization of the landing gear of a Mini-UAV[C]//Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Victoria: AIAA, 2008
    [4] ZHANG B S, SONG B W, MAO Z Y, et al. Layout optimization of landing gears for an underwater glider based on particle swarm algorithm[J]. Applied Ocean Research, 2018, 70: 22-31 doi: 10.1016/j.apor.2017.11.008
    [5] DING Z M, WU H Y, WANG C J, et al. Hierarchical optimization of landing performance for lander with adaptive landing gear[J]. Chinese Journal of Mechanical Engineering, 2019, 32(2): 24-35
    [6] SWATI R, KHAN A A, WEN L H. Weight optimized main landing gears for UAV under impact loading for evaluation of explicit dynamics study[C]//ICAMSME 2015 (International Conference on Advanced Materials, Structures and Mechanical Engineering). South-Korea: Incheon National University, 2015
    [7] XING D, CHEN W, MA J, et al. Structural bionic design for thin-walled cylindrical shell against buckling under axial compression[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2011, 225(11): 2619-2627 doi: 10.1177/0954406211407820
    [8] SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures[J]. Thin-Walled Structures, 2018, 125: 76-88 doi: 10.1016/j.tws.2018.01.010
    [9] RAY A K, MONDAL S, DAS S K, et al. Bamboo−A functionally graded composite-correlation between microstructure and mechanical strength[J]. Journal of Materials Science, 2005, 40(19): 5249-5253 doi: 10.1007/s10853-005-4419-9
    [10] 许述财, 邹猛, 魏灿刚, 等. 仿竹结构薄壁管的轴向耐撞性分析及优化[J]. 清华大学学报, 2014, 54(3): 299-304

    XU S C, ZOU M, WEI C G, et al. Axial crashworthiness analysis and optimization of a bionic thin-walled tube based on bamboo structure[J]. Journal of Tsinghua University, 2014, 54(3): 299-304 (in Chinese)
    [11] TANG M T, WANG Q, HE G Y, et al. Based on bionic optimization design and strength analysis of the tie rod of aircraft landing gear[J]. IOP Conference Series: Materials Science and Engineering, 2020, 816: 012007 doi: 10.1088/1757-899X/816/1/012007
    [12] SATO M, INOUE A, SHIMA H. Bamboo-inspired optimal design for functionally graded hollow cylinders[J]. PLoS One, 2017, 12(5): e0175029 doi: 10.1371/journal.pone.0175029
    [13] 王会霞. 仿竹结构薄壁管设计及其吸能特性研究[D]. 长春: 吉林大学, 2016

    WANG H X. Bionic design and research on energy absorption capability of thin-walled tube inspired by bamboo structure[D]. Changchun: Jilin University, 2016 (in Chinese)
    [14] 吴鹏. 基于竹子宏微观特性的立柱结构仿生设计[D]. 秦皇岛: 燕山大学, 2015

    WU P. The column structure bionic design of machine tool based on the macro and micro characteristics of bamboo[D]. Qinhuangdao: Yanshan University, 2015 (in Chinese)
    [15] 赵中锋. 小型长航时无人机结构初步设计及强度分析[D]. 哈尔滨: 哈尔滨工业大学, 2019

    ZHAO Z F. Preliminary design and strength analysis of small long-endurance UAV Structure[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
    [16] CHAUHAN H R, RASTOGI V, AGARWAL A K. Macro-mechanical analysis on the variation of fibre orientation in a composite UAV landing gear[J]. IOP Conference Series: Materials Science and Engineering, 2018, 422: 012005 doi: 10.1088/1757-899X/422/1/012005
    [17] 胡松, 祖磊, 李书欣, 等. 复合材料无人机滑撬式起落架设计与优化[J]. 玻璃钢/复合材料, 2018(3): 26-32

    HU S, ZU L, LI S X, et al. Design and optimization of composite UAV landing gear skids[J]. Fiber Reinforced Plastics/Composites, 2018(3): 26-32 (in Chinese)
    [18] MA J F, CHEN W Y, ZHAO L, et al. Elastic buckling of bionic cylindrical shells based on bamboo[J]. Journal of Bionic Engineering, 2008, 5(3): 231-238 doi: 10.1016/S1672-6529(08)60029-3
    [19] KIM H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency[J]. Thin-Walled Structures, 2002, 40(4): 311-327 doi: 10.1016/S0263-8231(01)00069-6
    [20] MOHAMMADIHA O, BEHESHTI H, ABOUTALEBI F H. Multi-objective optimisation of functionally graded honeycomb filled crash boxes under oblique impact loading[J]. International Journal of Crashworthiness, 2015, 20(1): 44-59 doi: 10.1080/13588265.2014.970398
    [21] LUO C, LI X, LI Y P, et al. Biomimetic design for unmanned aerial vehicle safe landing in hazardous terrain[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 531-541
    [22] 魏凯, 陈铭. 轻型直升机起落架的载荷分析与设计[J]. 飞机设计, 2012, 32(2): 28-31

    WEI K, CHEN M. Load analysis and design for the skid gear of a small-sized helicopter[J]. Aircraft Design, 2012, 32(2): 28-31 (in Chinese)
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  83
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-27
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回