留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同激光冲击区域对7075铝合金结构件缺口疲劳性能的影响

殷之平 陈瑶 黎泽松 郭挺

殷之平,陈瑶,黎泽松, 等. 不同激光冲击区域对7075铝合金结构件缺口疲劳性能的影响[J]. 机械科学与技术,2022,41(12):1907-1913 doi: 10.13433/j.cnki.1003-8728.20200546
引用本文: 殷之平,陈瑶,黎泽松, 等. 不同激光冲击区域对7075铝合金结构件缺口疲劳性能的影响[J]. 机械科学与技术,2022,41(12):1907-1913 doi: 10.13433/j.cnki.1003-8728.20200546
YIN Zhiping, CHEN Yao, LI Zesong, GUO Ting. Effects of Different Laser Impact Regions on Fatigue Performance of Structural Parts of 7075 Aluminum Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1907-1913. doi: 10.13433/j.cnki.1003-8728.20200546
Citation: YIN Zhiping, CHEN Yao, LI Zesong, GUO Ting. Effects of Different Laser Impact Regions on Fatigue Performance of Structural Parts of 7075 Aluminum Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1907-1913. doi: 10.13433/j.cnki.1003-8728.20200546

不同激光冲击区域对7075铝合金结构件缺口疲劳性能的影响

doi: 10.13433/j.cnki.1003-8728.20200546
详细信息
    作者简介:

    殷之平(1977−),副教授,硕士生导师,博士,研究方向为疲劳与断裂,yzp@nwpu.edu.cn

  • 中图分类号: V215.2+5

Effects of Different Laser Impact Regions on Fatigue Performance of Structural Parts of 7075 Aluminum Alloy

  • 摘要: 为了探究不同激光冲击区域对铝合金板材缺口的疲劳性能的影响,对7075-T651合金板材结构的缺口的不同区域进行了激光冲击处理。第1种方法仅针对板材的缺口边缘进行激光冲击;第2种方法是在板材缺口的一定范围内进行激光冲击。结果表明:采用第1种激光冲击方法,板材表面粗糙度更小,且板材的特征疲劳寿命是第2种激光冲击方法的3.23倍。通过对激光冲击的板材进行有限元仿真分析,揭示了激光冲击强化对板材疲劳寿命影响的原因。只有设置合理的激光冲击参数与冲击区域才能有效地改善疲劳性能,提升结构的疲劳寿命,不合理的冲击处理方式反而会降低结构的疲劳寿命。
  • 图  1  激光加工强化过程示意图

    图  2  7075-T651铝合金板材试样

    图  3  激光冲击强化区域

    图  4  MTS-250疲劳试验机

    图  5  两种冲击方法疲劳寿命对比

    图  6  7075-T651铝合金试件表面形貌

    图  7  7075-T651铝合金板材疲劳断口

    图  8  激光冲击路径及光斑搭接率

    图  9  有限元模型边界及网格划分

    图  10  不同Path路径

    图  11  不同峰值压力下粗糙度

    图  12  激光冲击数值模拟应力云图

    图  13  沿着厚度方向应力分布

    表  1  7075-T651铝合金化学成分[19]

    SiFe CuZn其余元素Al
    0.40.51.2~2.05.1~6.17.38~9.28余量
    下载: 导出CSV

    表  2  未强化的7075-T651铝合金板材疲劳试验数据

    试验件
    编号
    试验最大载荷
    Pmax/kN
    应力比
    r
    频率
    f/Hz
    疲劳寿命
    N/Cycle
    NLSP-18.50.12099504
    NLSP-28.50.120168505
    NLSP-38.50.120142897
    NLSP-48.50.120151236
    NLSP-58.50.120126886
    下载: 导出CSV

    表  3  强化后7075-T651铝合金板材的疲劳试验结果(强化区域a

    试验件
    编号
    试验最大载荷
    Pmax/kN
    应力比
    r
    频率
    f/Hz
    预寿命+剩余疲劳
    寿命N/Cycle
    LSP-1a8.50.12071500+248443
    LSP-2a8.50.12071500+710123
    LSP-3a8.50.12071500+554637
    LSP-4a8.50.12071500+184130
    LSP-5a8.50.12071500+214701
    下载: 导出CSV

    表  4  强化后7075-T651铝合金板材的疲劳试验结果(强化区域b

    试验件
    编号
    试验最大载
    Pmax/kN
    应力比
    r
    频率
    f/Hz
    预寿命+剩余疲
    劳寿命N/Cycle
    寿命
    增益/%
    LSP-1b8.50.12071500+177244−22.25
    LSP-2b8.50.12071500+10749−89.47
    LSP-3b8.50.12071500+43682−81.6
    LSP-4b8.50.12071500+65055−46.58
    LSP-5b8.50.12071500+86728−44.71
    下载: 导出CSV

    表  5  7075-T7651材料Johnson-Cook模型参数[24]

    A/MPaB/MPaCn
    336.5342.70.010.43
    下载: 导出CSV
  • [1] 张俊豪, 程秀全, 夏琴香, 等. 激光喷丸参数对7075铝合金材料强化效果影响规律的研究[C]//创新塑性加工技术, 推动智能制造发展——第十五届全国塑性工程学会年会暨第七届全球华人塑性加工技术交流会学术会议论文集. 济南: 中国机械工程学会, 2017: 596-599

    ZHANG J H, CHENG X Q, XIA Q X, et al. Research on the influence of the laser shot peening parameters on the strengthening effect for 7075 aluminum alloy material[C]// Innovative Plastic Processing Technology, Promote the Development of Intelligent Manufacturing-Proceedings of the 15th Annual Meeting of the National Plastic Engineering Society and the 7th Global Chinese Plastic Processing Technology Exchange Conference. Ji′nan: Chinese Mechanical Engineering Society, 2017: 596-599 (in Chinese)
    [2] LIU W C, DONG J, ZHANG P, et al. Improvement of fatigue properties by shot peening for Mg-10Gd-3Y alloys under different conditions[J]. Materials Science and Engineering:A, 2011, 528(18): 5935-5944 doi: 10.1016/j.msea.2011.04.004
    [3] 张新华, 曾元松, 王东坡, 等. 超声喷丸强化7075-T651铝合金表面性能研究[J]. 航空制造技术, 2008(13): 78-80+90 doi: 10.3969/j.issn.1671-833X.2008.13.014

    ZHANG X H, ZENG Y S, WANG D P, et al. Surface hardening effectiveness on aluminium alloy 7075-T651 by ultrasonic shot peening[J]. Aeronautical Manufacturing Technology, 2008(13): 78-80+90 (in Chinese) doi: 10.3969/j.issn.1671-833X.2008.13.014
    [4] KELLER S, KASHAEV N, KLUSEMANN B. Laser shock peening process modelling and experimental validation of AA2198-T3 and AA2198-T8[J]. PAMM, 2017, 17(1): 423-424 doi: 10.1002/pamm.201710181
    [5] DUAN C H, HAO X J, PEI Y T, et al. Stress wave and residual stress characteristics of TC17 titanium alloy subjected to warm laser shock peening[J]. Advanced Engineering Materials, 2019, 21(2): 1800448 doi: 10.1002/adem.201800448
    [6] 彭敏. 激光冲击强化对金属材料疲劳寿命的影响及应用[J]. 山东工业技术, 2016, 20(24): 299

    PENG M. Effect of laser shock strengthening on the fatigue life of metal materials and its application[J]. Shandong Industrial Technology, 2016, 20(24): 299 (in Chinese)
    [7] ACHINTHA M, NOWELL D, FUFARI D, et al. Fatigue behaviour of geometric features subjected to laser shock peening: experiments and modelling[J]. International Journal of Fatigue, 2014, 62: 171-179 doi: 10.1016/j.ijfatigue.2013.04.016
    [8] 张红英, 袁海洋. 7075高强铝合金构件缺陷对激光冲击强化残余应力的影响[J]. 轻合金加工技术, 2017, 45(8): 46-49

    ZHANG H Y, YUAN H Y. Effect of the structural defect of 7075 high-strength Al alloy on LSP residual stresses[J]. Light Alloy Fabrication Technology, 2017, 45(8): 46-49 (in Chinese)
    [9] 肖阳, 袁海洋. 7075铝合金三种表面强化工艺对比试验[J]. 轻金属, 2019(1): 54-57

    XIAO Y, YUAN H Y. Comparative experiment of three surface strengthening treatments of 7075 Al alloy[J]. Light Metals, 2019(1): 54-57 (in Chinese)
    [10] 姜银方, 彭涛涛, 虞文军, 等. 激光冲击强化对钛合金棒件疲劳寿命的影响[J]. 激光与红外, 2017, 47(9): 1108-1112 doi: 10.3969/j.issn.1001-5078.2017.09.009

    JIANG Y F, PENG T T, YU W J, et al. Influence of laser shock peening on fatigue life of titanium alloy rods[J]. Laser & Infrared, 2017, 47(9): 1108-1112 (in Chinese) doi: 10.3969/j.issn.1001-5078.2017.09.009
    [11] 姜银方, 李娟, 潘禹, 等. 双面激光冲击次序对小孔件强化效果影响研究[J]. 激光技术, 2016, 40(1): 82-85 doi: 10.7510/jgjs.issn.1001-3806.2016.01.018

    JIANG Y F, LI J, PAN Y, et al. Investigation of effect of two-side laser shock order on small-hole specimen strengthening[J]. Laser Technology, 2016, 40(1): 82-85 (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2016.01.018
    [12] 罗懋钟, 曹子文, 代军义, 等. 典型孔结构激光冲击强化残余应力场特征及有限元分析[J]. 航空制造技术, 2020, 63(17): 47-53

    LUO M Z, CAO Z W, DAI J Y, et al. Stress field characteristics and finite element analysis of typical pore structures caused by laser shock peening[J]. Aeronautical Manufacturing Technology, 2020, 63(17): 47-53 (in Chinese)
    [13] 杜永, 马玉娥, 苟磊, 等. 激光强化后7050凹槽铝板的残余应力分布规律研究[J]. 西北工业大学学报, 2019, 37(4): 643-649 doi: 10.3969/j.issn.1000-2758.2019.04.001

    DU Y, MA Y E, GOU L, et al. Study on residual stress distribution of 7050 aluminum sheet with groove after laser shock peening[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 643-649 (in Chinese) doi: 10.3969/j.issn.1000-2758.2019.04.001
    [14] 苟磊, 马玉娥, 杜永, 等. 7050凹槽铝板激光冲击强化残余应力分布与疲劳寿命[J]. 航空学报, 2019, 40(12): 423096

    GOU L, MA Y E, DU Y, et al. Residual stress profile and fatigue life of 7050 aluminum plate with groove under laser shot peening[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 423096 (in Chinese)
    [15] 车志刚, 曹子文, 邹世坤. 面向机身铝合金构件小孔结构激光冲击强化试验研究[C]//第17届全国特种加工学术会议论文集. 广州: 中国机械工程学会特种加工分会, 2017: 44-55

    CHE Z G, CAO Z W, ZOU S K. Experimental research on laser shock strengthening of small hole structure for fuselage aluminum alloy components[C]// Guangzhou: Special Processing Branch of Chinese Mechanical Engineering Society, 2017: 44-55 (in Chinese)
    [16] 李钢, 姚雄华, 郭超, 等. 激光冲击强化对7050-T7451铝合金凹槽结构疲劳寿命的影响[J]. 热加工工艺, 2019, 48(12): 88-92

    LI G, YAO X H, GUO C, et al. Effect of laser shock peening on fatigue life of 7050-T7451 aluminum alloy groove structure[J]. Hot Working Technology, 2019, 48(12): 88-92 (in Chinese)
    [17] 刘学军, 张旖诺, 吴嘉俊, 等. 激光冲击强化技术原理及其应用研究[J]. 有色金属加工, 2019, 48(1): 10-15

    LIU X J, ZHANG Y N, WU J J, et al. Research on principle and application of laser shock processing technology[J]. Nonferrous Metals Processing, 2019, 48(1): 10-15 (in Chinese)
    [18] TADDIA S, TROIANI E. Effect of laser shock peening on the fatigue behavior of thin aluminum panels[J]. Materials Today:Proceedings, 2015, 2(10): 5006-5014 doi: 10.1016/j.matpr.2015.10.090
    [19] 贾耀卿. 常用金属材料手册(下)[M]. 北京: 中国标准出版社, 2000: 141

    JIA Y Q. Handbook of common metal materials (Part 2)[M]. Beijing: Standards Press of China, 2000: 141 (in Chinese)
    [20] 王江涛, 陈菊芳. 强激光冲击强化对7075铝合金的硬度影响[J]. 常熟理工学院学报, 2016, 30(4): 34-37 doi: 10.3969/j.issn.1008-2794.2016.04.008

    WANG J T, CHEN J F. The influence of intensive laser shock peening on microhardness of 7075 aluminum alloy[J]. Journal of Changshu Institute of Technology, 2016, 30(4): 34-37 (in Chinese) doi: 10.3969/j.issn.1008-2794.2016.04.008
    [21] 郭翔, 刘建中, 胡本润, 等. 细节疲劳额定强度形状参数取值[J]. 航空材料学报, 2014, 34(2): 77-83

    GUO X, LIU J Z, HU B R, et al. Shape parameter in detail fatigue rating[J]. Journal of Aeronautical Materials, 2014, 34(2): 77-83 (in Chinese)
    [22] 李彬. 7075铝合金不同表面强化工艺的对比试验研究[J]. 轻合金加工技术, 2016, 44(11): 36-40

    LI B. Contrast test of different surface strengthening processes on 7075 Al alloy[J]. Light Alloy Fabrication Technology, 2016, 44(11): 36-40 (in Chinese)
    [23] 李博民, 刘新民, 张晖辉, 等. 铝合金激光冲击强化的三维数值模拟[J]. 应用激光, 2017, 37(6): 852-858

    LI B M, LIU X M, ZHANG H H, et al. Numerical simulation of laser shock processing in 2024 aluminum alloy[J]. Applied Laser, 2017, 37(6): 852-858 (in Chinese)
    [24] RAFTENBERG M N. A shear banding model for penetration calculations[J]. International Journal of Impact Engineering, 2001, 25(2): 123-146 doi: 10.1016/S0734-743X(00)00037-3
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  106
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回