留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

恒温环境中湿度驱动软体轮式机器人

屈涛 刘聪 代瑶 臧红彬

屈涛, 刘聪, 代瑶, 臧红彬. 恒温环境中湿度驱动软体轮式机器人[J]. 机械科学与技术, 2022, 41(8): 1176-1182. doi: 10.13433/j.cnki.1003-8728.20200458
引用本文: 屈涛, 刘聪, 代瑶, 臧红彬. 恒温环境中湿度驱动软体轮式机器人[J]. 机械科学与技术, 2022, 41(8): 1176-1182. doi: 10.13433/j.cnki.1003-8728.20200458
QU Tao, LIU Cong, DAI Yao, ZANG Hongbin. Soft Wheeled Robot Driven by Humidity in Uniform Temperature Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1176-1182. doi: 10.13433/j.cnki.1003-8728.20200458
Citation: QU Tao, LIU Cong, DAI Yao, ZANG Hongbin. Soft Wheeled Robot Driven by Humidity in Uniform Temperature Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1176-1182. doi: 10.13433/j.cnki.1003-8728.20200458

恒温环境中湿度驱动软体轮式机器人

doi: 10.13433/j.cnki.1003-8728.20200458
基金项目: 

西南科技大学博士研究基金项目 19zx7166

详细信息
    作者简介:

    屈涛(1997-), 硕士研究生, 研究方向为软体机器人, 1498865040@qq.com

    通讯作者:

    臧红彬, 副教授, 硕士生导师, 博士, zanghongbin@swust.edu.cn

  • 中图分类号: TP242

Soft Wheeled Robot Driven by Humidity in Uniform Temperature Environment

  • 摘要: 对软体机器人的无系留驱动方式探索是当前软体机器人领域一个重要的研究方向, 但当前的无系留软体机器人驱动, 大都需要交替改变环境条件来实现定向驱动, 为此, 本文提出一种能够在恒温环境下由湿度驱动的无系留软体轮式机器人, 基于硫酸纸和Ecoflex-0030的温湿度效应形变机理, 实现了对其在稳定的温度环境中定向滚动控制。将硅胶材料Ecoflex-0030涂布在硫酸纸上制成双层材料, 基于该材料剪切而成的4个软体驱动叶片粘贴在滚轮上, 通过在温、湿度环境下4个软体驱动叶片的可控形变, 实现对轮式结构主动推进的控制。研究了硫酸纸的形变机理, 给出了车轮叶片尺寸、驱动力矩的设计, 并对机器人的动力学进行了建模分析, 制作了实物样机并对其进行了滚动测试。实验表明: 从给定驱动叶片初始状态, 车轮在55 s内运动了约85 mm, 进一步, 通过将驱动叶片交错相位布置的两个驱动轮串联联接, 制作成两轮驱动小车, 验证了设计的可行性。该研究成果对设计新型温湿度控制的无系留软机器人和软机器的设计具有重要意义。
  • 图  1  硫酸纸水接触角图像

    图  2  硫酸纸表面扫描电子显微镜图像

    图  3  轮式机器人的制备

    图  4  单个步态运动示意图

    图  5  主动阶段动力学模型

    图  6  叶片力矩测量示意图

    图  7  Ecoflex-0030产生扭矩与温度的关系

    图  8  硫酸纸产生扭矩与曲率的关系

    图  9  不同温度下曲率与时间曲线关系

    图  10  不同厚度下曲率与时间曲线关系

    图  11  叶片(25 mm×20 mm×(0.11 mm+0.1 mm)) 多次循环输出扭矩

    图  12  滚动机器人的实验图像(比例尺20 mm)

  • [1] GARRAD M, SOTER G, CONN A T, et al. A soft matter computer for soft robots[J]. Science Robotics, 2019, 4(33): eaaw6060 doi: 10.1126/scirobotics.aaw6060
    [2] ZHANG Y B, WANG Z H, YANG Y, et al. Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots[J]. Science Advances, 2020, 6(9): eaay8606 doi: 10.1126/sciadv.aay8606
    [3] KIM W, BYUN J, KIM J K, et al. Bioinspired dual-morphing stretchable origami[J]. Science Robotics, 2019, 4(36): eaay3493 doi: 10.1126/scirobotics.aay3493
    [4] DUDUTA M, HAJIESMAILI E, ZHAO H C, et al. Realizing the potential of dielectric elastomer artificial muscles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(7): 2476-2481 doi: 10.1073/pnas.1815053116
    [5] UMRAO S, TABASSIAN R, KIM J, et al. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics[J]. Science Robotics, 2019, 4(33): eaaw7797 doi: 10.1126/scirobotics.aaw7797
    [6] AHN C, LI K, CAI S Q. Light or thermally powered autonomous rolling of an elastomer rod[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25689-25696
    [7] ZHU P H, LIU Y, FANG Z Q, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019, 35(14): 4834-4842 doi: 10.1021/acs.langmuir.8b04259
    [8] CASTALDO R, LAMA G C, APREA P, et al. Humidity-driven mechanical and electrical response of graphene/cloisite hybrid films[J]. Advanced Functional Materials, 2019, 29(14): 1807744 doi: 10.1002/adfm.201807744
    [9] YANG H T, YEOW B S, LI Z P, et al. Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities[J]. Science Robotics, 2019, 4(33): eaax7020 doi: 10.1126/scirobotics.aax7020
    [10] ZHANG Y, ELLINGFORD C, ZHANG R A, et al. Electrical and mechanical self-healing in high-performance dielectric elastomer actuator materials[J]. Advanced Functional Materials, 2019, 29(15): 1808431 doi: 10.1002/adfm.201808431
    [11] KIM Y, YUK H, ZHAO R K, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558(7709): 274-279 doi: 10.1038/s41586-018-0185-0
    [12] JIA T J, WANG Y, DOU Y Y, et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles[J]. Advanced Functional Materials, 2019, 29(18): 1808241 doi: 10.1002/adfm.201808241
    [13] LENDLEIN A; GOULD O E C. Reprogrammable recovery and actuation behaviour of shape-memory polymers[J]. Nature Reviews Materials, 2019, 4(2): 116-133 doi: 10.1038/s41578-018-0078-8
    [14] WANG C J, SIM K, CHEN J, et al. Soft ultrathin electronics innervated adaptive fully soft robots[J]. Advanced Materials, 2018, 30(13): 1706695 doi: 10.1002/adma.201706695
    [15] SHIN B, HA J, LEE M, et al. Hygrobot: a self-locomotive ratcheted actuator powered by environmental humidity[J]. Science Robotics, 2018, 3(14): eaar2629 doi: 10.1126/scirobotics.aar2629
    [16] TROYANO J, ARNÉ-SÁNCHEZ A, MASPOCH D. Programmable self-assembling 3D architectures generated by patterning of swellable MOF-based composite films[J]. Advanced Materials, 2019, 31(21): 1808235 doi: 10.1002/adma.201808235
    [17] WANG W, XIANG C X, ZHU Q, et al. Multistimulus responsive actuator with GO and carbon nanotube/PDMS bilayer structure for flexible and smart devices[J]. ACS Applied Materials & Interfaces, 2018, 10(32): 27215-27223
    [18] MARTINEZ R V, FISH C R, CHEN X, et al. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators[J]. Advanced Functional Materials, 2012, 22(7): 1376-1384 doi: 10.1002/adfm.201102978
    [19] REYSSAT E, AHADEVAN L. How wet paper curls[J]. Europhysics Letters, 2011, 93(5): 54001 doi: 10.1209/0295-5075/93/54001
    [20] QU T, ZANG H B, DAI Y, et al. A soft actuator with controllable deformation driven by humidity[C]//Proceedings of 2019 WRC Symposium on Advanced Robotics and Automation. Beijing: IEEE, 2019: 235-241
    [21] DAI Y, QU T, ZANG H B, et al. Soft actuators driven by humidity and temperature based on plant parchment[C]// Proceedings of 2019 WRC Symposium on Advanced Robotics and Automation. Beijing: IEEE, 2019: 228-234
  • 加载中
图(12)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  108
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回