留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑纤维角度变化的各向异性材料柔顺机构拓扑优化设计

占金青 秦洋洋 刘敏

占金青, 秦洋洋, 刘敏. 考虑纤维角度变化的各向异性材料柔顺机构拓扑优化设计[J]. 机械科学与技术, 2022, 41(8): 1169-1175. doi: 10.13433/j.cnki.1003-8728.20200443
引用本文: 占金青, 秦洋洋, 刘敏. 考虑纤维角度变化的各向异性材料柔顺机构拓扑优化设计[J]. 机械科学与技术, 2022, 41(8): 1169-1175. doi: 10.13433/j.cnki.1003-8728.20200443
ZHAN Jinqing, QIN Yangyang, LIU Min. Topological Design of Orthotropic Material Compliant Mechanisms Considering Variation of Fiber Angle[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1169-1175. doi: 10.13433/j.cnki.1003-8728.20200443
Citation: ZHAN Jinqing, QIN Yangyang, LIU Min. Topological Design of Orthotropic Material Compliant Mechanisms Considering Variation of Fiber Angle[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1169-1175. doi: 10.13433/j.cnki.1003-8728.20200443

考虑纤维角度变化的各向异性材料柔顺机构拓扑优化设计

doi: 10.13433/j.cnki.1003-8728.20200443
基金项目: 

国家自然科学基金项目 52065019

国家自然科学基金项目 51665011

江西省自然科学基金项目 20202BAB204015

江西省自然科学基金项目 20202ACBL214013

江西省自然科学基金项目 20192BAB216021

详细信息
    作者简介:

    占金青(1979-), 副教授, 博士, 研究方向为柔顺机构及结构优化设计, zhan_jq@126.com

    通讯作者:

    刘敏, 讲师, 博士, lmin2016@foxmail.com

  • 中图分类号: TH112

Topological Design of Orthotropic Material Compliant Mechanisms Considering Variation of Fiber Angle

  • 摘要: 为了提高各向异性材料柔顺机构的变形性能, 提出一种考虑纤维角度变化的各向异性材料柔顺机构拓扑优化设计方法。采用改进的固体各向异性材料惩罚模型(Solid orthotropic material penalization, SOMP)引入变化的设计单元纤维角度, 以柔顺机构的互应变能最大化为目标函数, 以材料体积为约束, 建立考虑纤维角度变化的各向异性材料柔顺机构拓扑优化数学模型, 采用移动渐近算法求解各向异性材料柔顺机构拓扑优化问题。数值算例结果表明: 提出的设计方法是有效的, 与未考虑角度变化拓扑优化结果相比, 考虑纤维角度变化的各向异性材料拓扑优化获得的柔顺机构构型有所不同, 并且互应变能更大。
  • 图  1  夹持器设计域

    图  2  考虑纤维角度变化的各向异性材料夹持器拓扑优化

    图  3  纤维角度为0的各向异性材料夹持器拓扑优化

    图  4  纤维角度为45°的各向异性材料夹持器拓扑优化

    图  5  纤维角度为90°的各向异性材料夹持器拓扑优化

    图  6  咬合机构设计域

    图  7  考虑纤维角度变化的各向异性材料咬合机构拓扑优化

    图  8  纤维角度为0°的各向异性材料咬合机构拓扑优化

    图  9  纤维角度为45°的各向异性材料咬合机构拓扑优化

    图  10  纤维角度为90°的各向异性材料咬合机构拓扑优化

    表  1  不同纤维角度条件获得的夹持器的互应变能 Nm

    变化纤维角度 固定纤维角度/(°)
    0 45 90
    3.131×10-6 2.002×10-6 2.153×10-6 2.030×10-6
    下载: 导出CSV

    表  2  不同纤维角度条件获得的咬合机构的互应变能 Nm

    变化纤维角度 固定纤维角度/(°)
    0 45 90
    2.354×10-6 2.000×10-6 1.860×10-6 1.605×10-6
    下载: 导出CSV
  • [1] HOWELL L L. Compliant mechanisms[M]. New York: Wiley, 2001
    [2] 占旺虎. 平面三自由度柔顺机构构型设计与性能分析[J]. 机械科学与技术, 2019, 38(11): 1738-1744 doi: 10.13433/j.cnki.1003-8728.20190044

    ZHAN W H. Structural design and performance analysis of a planar 3-DOF compliant mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1738-1744 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190044
    [3] LIU M, ZHAN J Q, ZHU B L, et al. Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness[J]. Mechanism and Machine Theory, 2020, 146: 103728 doi: 10.1016/j.mechmachtheory.2019.103728
    [4] 张永红, 桑阳, 葛文杰, 等. 多相材料的柔性机构拓扑优化设计[J]. 机械科学与技术, 2017, 36(9): 1320-1326 doi: 10.13433/j.cnki.1003-8728.2017.0902

    ZHANG Y H, SANG Y, GE W J, et al. Topology optimization design of compliant mechanisms for multiphase materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1320-1326 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0902
    [5] ZHU B L, ZHANG X M, ZHANG H C, et al. Design of compliant mechanisms using continuum topology optimization: a review[J]. Mechanism and Machine Theory, 2020, 143: 103622 doi: 10.1016/j.mechmachtheory.2019.103622
    [6] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13): 53-68 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201513006.htm

    YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201513006.htm
    [7] 朱大昌, 安梓铭, 李雅琼, 等. 整体式平面两自由度全柔顺并联机构构型拓扑优化设计[J]. 机械科学与技术, 2015, 34(7): 1006-1010 doi: 10.13433/j.cnki.1003-8728.2015.0706

    ZHU D C, AN Z M, LI Y Q, et al. Topology optimization integrated design of 2-DoF fully compliant planar parallel manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(7): 1006-1010 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0706
    [8] WANG Y Q, LUO Z, ZHANG X P, et al. Topological design of compliant smart structures with embedded movable actuators[J]. Smart Materials and Structures, 2014, 23(4): 045024 doi: 10.1088/0964-1726/23/4/045024
    [9] 占金青, 龙良明, 刘敏, 等. 基于最大应力约束的柔顺机构拓扑优化设计[J]. 机械工程学报, 2018, 54(23): 32-38 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201823004.htm

    ZHAN J Q, LONG L M, LIU M, et al. Topological design of compliant mechanisms with maximum stress constraint[J]. Journal of Mechanical Engineering, 2018, 54(23): 32-38 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201823004.htm
    [10] ZHU D C, FENG Y P, ZHAN W H. Topology optimization of three-translational degree-of-freedom spatial compliant mechanism[J]. Advances in Mechanical Engineering, 2019, 11(2): 1-12
    [11] 同新星. 复合材料层合板柔性机构拓扑优化方法研究[D]. 西安: 西北工业大学, 2017

    TONG X X. Research on topology optimization method for compliant mechanisms with composites laminated plates[D]. Xi'an: Northwestern Polytechnical University, 2017 (in Chinese)
    [12] 梁森, 梁磊, 仪垂杰, 等. 基于形状导数和水平基函数的复合材料层合结构拓扑优化[J]. 复合材料学报, 2008, 25(3): 174-181 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200803029.htm

    LIANG S, LIANG L, YI C J, et al. Topological optimization of composite laminated structure with shape derivative and level set[J]. Acta Materiae Compositae Sinica, 2008, 25(3): 174-181 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200803029.htm
    [13] LI D M, ZHANG X M, GUAN Y S, et al. Topology optimization of compliant mechanisms with anisotropic composite materials[C]//IEEE International Conference on Mechatronics and Automation. Xi'an: IEEE, 2010: 416-421
    [14] TONG X X, GE W J, ZHANG Y H, et al. Topology design and analysis of compliant mechanisms with composite laminated plates[J]. Journal of Mechanical Science and Technology, 2019, 33(2): 613-620 doi: 10.1007/s12206-019-0115-6
    [15] TONG X X, GE W J, GAO X Q, et al. Optimization of combining fiber orientation and topology for constant-stiffness composite laminated plates[J]. Journal of Optimization Theory and Applications, 2019, 181(2): 653-670 doi: 10.1007/s10957-018-1433-z
    [16] TONG X X, GE W J, GAO X Q, et al. Simultaneous optimization of fiber orientations and topology shape for composites compliant leading edge[J]. Journal of Reinforced Plastics and Composites, 2019, 38(15): 706-716 doi: 10.1177/0731684419842292
    [17] STEGMANN J, LUND E. Discrete material optimization of general composite shell structures[J]. International Journal for Numerical Methods in Engineering, 2005, 62(14): 2009-2027 doi: 10.1002/nme.1259
    [18] JIANG D L, HOGLUND R, SMITH D E, et al. Continuous fiber angle topology optimization for polymer composite deposition additive manufacturing applications[J]. Fibers, 2019, 7(2): 14 doi: 10.3390/fib7020014
    [19] SVANBERG K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373 doi: 10.1002/nme.1620240207
    [20] ANDREASSEN E, CLAUSEN A, SCHEVENELS M, et al. Efficient topology optimization in MATLAB using 88 lines of code[J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 1-16 doi: 10.1007/s00158-010-0594-7
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  228
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回