留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变厚度复合材料加筋壁板剪切屈曲及后屈曲承载能力研究

高伟 成炜 赵常飞

高伟, 成炜, 赵常飞. 变厚度复合材料加筋壁板剪切屈曲及后屈曲承载能力研究[J]. 机械科学与技术, 2022, 41(5): 815-820. doi: 10.13433/j.cnki.1003-8728.20200420
引用本文: 高伟, 成炜, 赵常飞. 变厚度复合材料加筋壁板剪切屈曲及后屈曲承载能力研究[J]. 机械科学与技术, 2022, 41(5): 815-820. doi: 10.13433/j.cnki.1003-8728.20200420
GAO Wei, CHENG Wei, ZHAO Changfei. Study on Shear Buckling and Post-buckling Capacity of Composite Stiffened Panels with Variable Thickness[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 815-820. doi: 10.13433/j.cnki.1003-8728.20200420
Citation: GAO Wei, CHENG Wei, ZHAO Changfei. Study on Shear Buckling and Post-buckling Capacity of Composite Stiffened Panels with Variable Thickness[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 815-820. doi: 10.13433/j.cnki.1003-8728.20200420

变厚度复合材料加筋壁板剪切屈曲及后屈曲承载能力研究

doi: 10.13433/j.cnki.1003-8728.20200420
详细信息
    作者简介:

    高伟(1984-), 高级工程师, 本科, 研究方向为复合材料结构设计与强度分析, 51418747@qq.com

  • 中图分类号: V214.8

Study on Shear Buckling and Post-buckling Capacity of Composite Stiffened Panels with Variable Thickness

  • 摘要: 为有效提高复合材料主承力结构效率, 变厚度复合材料层压结构承载能力研究具有重要意义。基于ABAQUS中Continuum Shell单元模拟变厚度复合材料层压结构, 采用特征值法和渐进损伤失效法求解长桁横截面积不同的两块变厚度复合材料加筋壁板剪切屈曲及后屈曲承载能力。研究结果表明: 其屈曲载荷和后屈曲载荷数值分析值与试验值相对误差不大于4%, 即该模型构建及求解方法可以准确预测其屈曲载荷和后屈曲载荷; 加筋壁板剪切载荷承载能力由蒙皮起决定性作用, 通过改变长桁横截面积不能有效提高其屈曲载荷和后屈曲载荷。
  • 图  1  试验件几何参数示意图

    图  2  等效应力与等效位移关系

    图  3  构型Ⅰ加筋壁板试验件1阶屈曲模态

    图  4  构型Ⅱ加筋壁板试验件1阶屈曲模态

    图  5  加筋壁板加载端载荷位移曲线

    图  6  试验件支持和加载方式

    图  7  试验件应变花片布置图

    图  8  构型Ⅰ加筋壁板典型载荷-应变曲线图

    图  9  构型Ⅱ加筋壁板典型载荷-应变曲线图

    图  10  剪应变测量值和有限元模拟值对比图

    表  1  复合材料性能参数

    EL/GPa ET/GPa GLT/GPa νLT XT/MPa XC/MPa YT/MPa YC/MPa S/MPa
    179.1 8.62 4.6 0.33 3 259 1 626 54.6 253 147
    下载: 导出CSV

    表  2  加筋壁板基本铺层信息

    厚度/mm 铺层信息
    1.84 [45/0/-45/90/0]s
    2.94 [45/0/0/-45/90/0/0/-45]s
    2.21 [45/0/0/90/-45/0]s
    2.576 [45/0/0/90/0/-45/0]s
    下载: 导出CSV

    表  3  复合材料二维Hashin失效准则

    失效模式 失效判据
    纤维拉伸损伤σ11≥0
    纤维压缩损伤σ11 < 0
    基体拉伸损伤σ22≥0
    基体压缩损伤σ22 < 0
    注: σij为应力向量; Xt, Xc分别为材料单层纵向拉伸和压缩强度; Yt, Yc分别为材料单层横向拉伸和压缩强度; S为剪切强度。
    下载: 导出CSV

    表  4  屈曲载荷和破坏载荷计算结果与试验结果对比

    构型 屈曲载荷 破坏载荷
    计算值 试验值 误差 计算值 试验值 误差
    I 177 kN 178.5 kN -0.8% 248 kN 257.9 kN -3.8%
    190 kN 192.7 kN -1.4% 260 kN 268.4 kN -3.1%
    下载: 导出CSV
  • [1] 朱梅庄. 复合材料结构设计手册[M]. 北京: 航空工业出版社, 2006

    ZHU M Z. Manual of composite structure design[M]. Beijing: Aviation Industry Press, 2006 (in Chinese)
    [2] 中国航空研究院. 复合材料结构设计手册[M]. 北京: 航空工业出版社, 2001

    Chinese Aeronautical Establishment. Design handbook of composites structures[M]. Beijing: Aviation Industry Press, 2001 (in Chinese)
    [3] MALLELA U K, UPADHYAY A. Buckling of laminated composite stiffened panels subjected to in-plane shear: A parametric study[J]. Thin-Walled Structures, 2006, 44(3): 354-361 doi: 10.1016/j.tws.2006.03.008
    [4] AMBUR D R, JAUNKY N, HILBURGER M W. Progressive failure studies of stiffened panels subjected to shear loading[J]. Composite Structures, 2004, 65(2): 129-142 doi: 10.1016/S0263-8223(03)00153-3
    [5] 王新年, 赵伟, 吴师, 等. 复合材料平尾加筋壁板剪切稳定性[J]. 南京航空航天大学学报, 2017, 49(6): 812-819 https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201706009.htm

    WANG X N, ZHAO W, WU S, et al. Buckling behaviour of stiffened composite tail panel subjected to shear loading[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(6): 812-819 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201706009.htm
    [6] 张国凡, 孙侠生, 孙中雷. 复合材料加筋壁板剪切破坏试验与后屈曲分析[J]. 机械科学与技术, 2016, 35(8): 1280-1285 doi: 10.13433/j.cnki.1003-8728.2016.0821

    ZHANG G F, SUN X S, SUN Z L. Failure test and post-buckling analysis of composite stiffened panels under shear load[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(8): 1280-1285 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2016.0821
    [7] 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板剪切稳定性[J]. 复合材料学报, 2020, 37(7): 1590-1600 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202007011.htm

    SHI J W, ZHAO J, LIU C J, et al. Stability of composite stiffened panels in plane shear[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1590-1600 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202007011.htm
    [8] 冯宇, 何宇廷, 邵青, 等. 复合材料加筋板剪切屈曲特性研究[J]. 机械强度, 2013, 35(3): 288-291 https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201303013.htm

    FENG Y, HE Y T, SHAO Q, et al. Study on shear stability performance of composite stiffened panel[J]. Journal of Mechanical Strength, 2013, 35(3): 288-291 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201303013.htm
    [9] 汪厚冰, 林国伟, 韩雪冰, 等. 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报, 2019, 40(8): 222889 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908011.htm

    WANG H B, LIN G W, HAN X B, et al. Shear buckling performance of composite hat-stiffened panels[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 222889 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908011.htm
    [10] 谭翔飞, 何宇廷, 冯宇, 等. 航空复合材料加筋板剪切稳定性及后屈曲承载性能[J]. 复合材料学报, 2018, 35(2): 320-331 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201802011.htm

    TAN X F, HE Y T, FENG Y, et al. Stability and post-buckling carrying capacity of aeronautic composite stiffened panel under shear loading[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 320-331 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201802011.htm
    [11] 王平安, 矫桂琼, 王波, 等. 复合材料加筋板在剪切载荷下的屈曲特性研究[J]. 机械强度, 2009, 31(1): 78-82 doi: 10.3321/j.issn:1001-9669.2009.01.017

    WANG P A, JIAO G Q, WANG B, et al. Buckling performance analysis of stiffened composite plate under shear loading[J]. Journal of Mechanical Strength, 2009, 31(1): 78-82 (in Chinese) doi: 10.3321/j.issn:1001-9669.2009.01.017
    [12] 朱建辉, 曾建江, 陈滨琦, 等. 复合材料层合板压缩载荷下渐进损伤分析与试验验证[J]. 机械科学与技术, 2015, 34(5): 785-789 doi: 10.13433/j.cnki.1003-8728.2015.0526

    ZHU J H, ZENG J J, CHEN B Q, et al. Analysis and experimental validation of the progressive damage for laminate composite under compression[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(5): 785-789 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0526
    [13] TURON A, DÁVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics, 2007, 74(10): 1665-1682 doi: 10.1016/j.engfracmech.2006.08.025
    [14] DIEHL T. On using a penalty-based cohesive-zone finite element approach, Part Ⅰ: elastic solution benchmarks[J]. International Journal of Adhesion and Adhesives, 2008, 28(4-5): 237-255 doi: 10.1016/j.ijadhadh.2007.06.003
    [15] 徐荣章, 关志东, 刘璐, 等. 屈曲模态对含缺陷复材加筋板后屈曲的影响[J]. 北京航空航天大学学报, 2014, 40(9): 1299-1304 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201409022.htm

    XU R Z, GUAN Z D, LIU L, et al. Effect of buckling mode on performance of post-buckled composite stringer-stiffened panels with debond[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1299-1304 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201409022.htm
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  35
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-27
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回