留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负压脉冲振荡工具工作特性研究

田家林 葛桐旭 胡志超 杨毅

田家林, 葛桐旭, 胡志超, 杨毅. 负压脉冲振荡工具工作特性研究[J]. 机械科学与技术, 2022, 41(5): 657-665. doi: 10.13433/j.cnki.1003-8728.20200404
引用本文: 田家林, 葛桐旭, 胡志超, 杨毅. 负压脉冲振荡工具工作特性研究[J]. 机械科学与技术, 2022, 41(5): 657-665. doi: 10.13433/j.cnki.1003-8728.20200404
TIAN Jialin, GE Tongxu, HU Zhichao, YANG Yi. Study on Working Characteristics of Negative Pressure Pulsed Hydraulic Oscillating Tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 657-665. doi: 10.13433/j.cnki.1003-8728.20200404
Citation: TIAN Jialin, GE Tongxu, HU Zhichao, YANG Yi. Study on Working Characteristics of Negative Pressure Pulsed Hydraulic Oscillating Tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 657-665. doi: 10.13433/j.cnki.1003-8728.20200404

负压脉冲振荡工具工作特性研究

doi: 10.13433/j.cnki.1003-8728.20200404
详细信息
    作者简介:

    田家林(1979-), 教授, 博士生导师, 博士, 研究方向为非线性动力学及机械设计与理论, tianjialin001@gmail.com

  • 中图分类号: TE921.9

Study on Working Characteristics of Negative Pressure Pulsed Hydraulic Oscillating Tool

  • 摘要: 常规的油气田开发已不能满足人们需求, 油气开发向更复杂的地层方向发展。在水平井、大位移井等复杂结构井的油气勘探开发中, 井眼轨迹难以控制、机械钻速低、钻柱托压等问题会给钻井过程带来很大的挑战。为解决上述问题, 本文设计了一种负压脉冲水力振荡工具用于减小水平井、大位移井的摩擦阻力, 详细分析了负压脉冲振荡工具结构原理。利用运动学分析结果对负压脉冲水力振荡器的水力学特性进行分析, 结合相关算例参数, 得出当输入工具的流体流量一定, 阀轴系统径向喷嘴直径越大, 工具的压降和产生的水击压强越大, 产生的轴向力冲击力也越大。并通过有限元流体仿真分析结果验证理论计算的准确性, 为负压脉冲水力振荡器工具今后的现场应用选型和钻井提速提供理论依据。
  • 图  1  负压脉冲振荡工具结构图

    图  2  阀轴总成局部视图

    图  3  钻井液流向示意图

    图  4  阀轴总成受力分布图

    图  5  流体微元段液柱分析

    图  6  阀轴进口流体压力变化曲线

    图  7  出口流体压力变化曲线

    图  8  负压脉冲振荡器压降变化曲线

    图  9  负压脉冲振荡器水击压降变化曲线

    图  10  负压脉冲振荡器轴向力变化曲线

    图  11  观测面x-y和观测线line-1、line-2和line-3位置示意图

    图  12  不同直径径向喷嘴条件下观测线上仿真压力对比

    图  13  不同直径径向喷嘴条件下观测线上仿真速度与理论计算速度对比

    图  14  不同进口流量条件下观测线上压力仿真值与理论值对比

    图  15  不同进口输入流量条件下观测线上仿真速度与理论计算速度对比

    表  1  管路进口和出口的局部阻力系数ζ

    α/(°) ζ α/(°) ζ
    5 1.0 50 0.78
    10 0.99 60 0.70
    15 0.98 70 0.63
    20 0.96 80 0.56
    30 0.91 90 0.50
    40 0.85
    下载: 导出CSV

    表  2  算例分析参数

    参数名称 数值
    水帽外侧环空面积A1/mm2 6 459.900
    水帽斜孔面积A2/mm2 2 120.575
    阀轴小端内腔面积A3/mm2 2 042.821
    阀轴大端端内腔面积A4/mm2 4 071.504
    阀轴外壳内腔面积A5/mm2 10 207.637
    轴向喷嘴过流面积A6/mm2 1 256.637
    阀轴外壳内腔面积A7/mm2 2 827.433
    转子环空面积S1/mm2 8 824.734
    转子下端环空面积S2/mm2 14 313.881
    钻井液密度ρ/(kg·m-3) 1100
    进口压力p/MPa 20
    输入流量Q/(L·s-1) 30
    重力加速g/(m·s-2) 9.8
    马达级数ξ 1.5
    矫正系数Kp 0.5
    每一级压降Δpξ/MPa 0.9
    径向喷嘴流量系数 0.98
    井眼环空钻井液的压力/MPa 10
    流体体积弹性模量K/Pa 2.06×109
    管壁材料弹性模量E/Pa 2.10×1011
    管壁厚度δ/mm 17.78
    管路半径R/mm 67.5
    下载: 导出CSV

    表  3  钻井液物理参数

    密度/(kg·m-3) 动力黏度/(kg·(m·s)-1) 温度/℃ 比热容/(J·(kg·K)-1) 导热系数/(W·(m·K)-1)
    1 100 0.002 70 4.183 0.598 5
    下载: 导出CSV

    表  4  入口边界条件基本参数

    入口面积/ m2 入口流速/ (m·s-1) 水力直径/m 雷诺数Re 入口湍流强度
    6.46×10-3 4.644 0.035 76 631 0.022
    下载: 导出CSV

    表  5  出口a边界条件基本参数

    径向喷嘴直径/mm 出口压力/MPa 出口面积/ m2 水力直径/m 雷诺数Re 出口湍流强度
    20 10.356 2.827×10-3 0.06 29 703 0.044
    16 10 827 2.827×10-3 0.06 49 486 0.041
    12 12.548 2.827×10-3 0.06 62 698 0.040
    0 18.141 2.827×10-3 0.06 175 070 0.035
    下载: 导出CSV

    表  6  出口b边界条件基本参数

    径向喷嘴直径/mm 出口面积/m2 出口压力/ MPa 水力直径/m 雷诺数Re 出口湍流强度
    20 0.314×10-3 10.00 0.02 122 549 0.037
    16 0.201×10-3 10.00 0.016 153 186 0.036
    12 0.113×10-3 10.00 0.012 204 248 0.036
    下载: 导出CSV
  • [1] 杨永印, 沈忠厚, 王瑞和. 低压脉冲射流井底欠平衡钻井提高钻速机理分析[J]. 石油钻探技术, 2002, 30(5): 15-16 doi: 10.3969/j.issn.1001-0890.2002.05.006

    YANG Y Y, SHEN Z H, WANG R H. Analysis of the mechanisms of improving ROP using low pressure pulse jetting techniques in under-balanced drilling[J]. Petroleum Drilling Techniques, 2002, 30(5): 15-16 (in Chinese) doi: 10.3969/j.issn.1001-0890.2002.05.006
    [2] TIAN J, YANG H, DAI L, et al. Improved design and dynamics characteristics research of a composite percussion drilling tool[J]. ASME. Journal of Energy Resources Technology. 2021, 144(6): 063201
    [3] 余志清. 降摩阻短节在定向钻井及水平钻井中的应用[J]. 钻采工艺, 1999(1): 66-67 https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY901.022.htm

    YU Z Q. Application of friction reducing sub-joints in directional drilling and horizontal drilling[J]. Drilling & Production Technology, 1999(1): 66-67 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY901.022.htm
    [4] TIAN J, ZHOU Y, YANG L, et al. Analysis of stick-slip reduction for a new torsional vibration tool based on PID control[J]. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multi-body Dynamics. 2020, 234(1), 82-94 doi: 10.1177/1464419319876397
    [5] 程锋瑞, 杨永印, 范红明, 等. 分流式负压脉冲调制器的设计[J]. 化工管理, 2014(2): 50-50 doi: 10.3969/j.issn.1008-4800.2014.02.045

    CHENG F R, YANG Y Y, FAN H M, et al. Design of shunt negative pressure pulse modulator[J]. Chemical Enterprise Management, 2014(2): 50-50 (in Chinese) doi: 10.3969/j.issn.1008-4800.2014.02.045
    [6] GEE R, HANELY C, CANUEL L, et al. Axial oscillation tools vs. lateral vibration tools for friction reduction-what's the best way to shake the pipe?[C]// SPE/IADC Drilling Conference and Exhibition, 2015, 173024
    [7] WALTER B. Acuoustic flow pulsing apparatus and method for drill string: US, 7059426[P]. 2006-06-13
    [8] 郭元恒, 何世明, 刘忠飞, 等. 长水平段水平井钻井技术难点分析及对策[J]. 石油钻采工艺, 2013(1): 14-18 doi: 10.3969/j.issn.1000-7393.2013.01.006

    GUO Y H, HE S M, LIU Z F, et al. Difficulties and countermeasures for drilling long lateral-section horizontal wells[J]. Oil Drilling & Production Technology, 2013(1): 14-18 (in Chinese) doi: 10.3969/j.issn.1000-7393.2013.01.006
    [9] BAEZ F, BARTON S. Delivering performance in shale gas plays: Innovative technology solutions[C]// SPE/IADC 140320, 2011
    [10] FRANCA, LUIZ FP. Drilling action of roller-cone bits: modeling and experimental validation[J]. Journal of Energy Resources Technology, 2010, 132(4): 043101 doi: 10.1115/1.4003168
    [11] TIAN J, WEI L, YANG L, et al. Research and experimental analysis of drill string dynamics characteristics and stick-slip reduction mechanism. Journal of Mechanical Science and Technology. 2020, 34(3): 977-986 doi: 10.1007/s12206-020-0201-9
    [12] TIAN J, LI G, DAI L, et al. Torsional vibrations and nonlinear dynamic characteristics of drill strings and stick-slip reduction mechanism[J]. ASME. Journal of Computational and Nonlinear Dynamics. 2019, 14(8): 081007-11 doi: 10.1115/1.4043564
    [13] KANYANTA V, DORMER A S, MURPHY N, et al. Impact fatigue fracture of polycrystalline diamond compact (PDC) cutters and the effect of microstructure[J]. International Journal of Refractory Metals & Hard Materials, 2014, 46(1): 145-151
    [14] RITTOT G, ESCALANTE M R, SAMPAIO R, et al. Drill-string horizontal dynamics with uncertainty on the frictional force[J]. Journal of Sound and Vibration, 2013, 332: 145-153 doi: 10.1016/j.jsv.2012.08.007
    [15] 杨玲霞, 李树慧, 侯咏梅, 范如琴. 水击基本方程的改进[J]. 水利学报, 2007(08): 948-952

    YANG L X, LI S H, HOU Y M, et al. Improvement of fundamental equation of water hammer[J]. Journal of Hydraulic Engineering, 2007(08): 948-952 (in Chinese)
    [16] TIAN J, ZHANG T, DAI L, et al. Dynamic characteristics and test analysis of a new drilling downhole tool with anti-stick-slip features[J]. Journal of Mechanical Science and Technology, 2018, 32(10): 4941-4949 doi: 10.1007/s12206-018-0942-x
    [17] EAST L, WILLETT R, SURJAATMADJA J, et al. Application of new fracturing technique improves stimulation success for openhole horizontal completions[C]// SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers, 2004
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  47
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回