CQTBEW Algorithm and its Application in Bearing Early Fault Diagnosis
-
摘要: 滚动轴承出现局部剥落、点蚀等故障时,会产生周期性的振动冲击信号,通常对此信号进行分析即可诊断出故障的严重程度以及出现的位置。但是,设备工作时往往伴随着较大的噪声,因此冲击信号,尤其是早期故障的振动冲击信号,很容易被噪声淹没。针对此问题,本文提出一种基于恒Q变换与二进制能量权重的CQTBEW算法,首先将振动冲击信号进行恒Q变换分析,获得时频谱矩阵;其次对矩阵进行频率分段处理,在时间轴设置滑移窗口,筛选局部极值并二值化时频谱,向时域叠加获得能量时域信号,进行功率谱分析诊断获得特征频率;最后进行仿真信号与实验信号的分析验证。结果表明,该方法具有可行性。Abstract: Periodic vibration and shock signal will be generated when rolling bearing has local spalling, pitting and other faults. Usually, the severity and location of the fault can be diagnosed by analyzing the signal. However, the equipment operation is often accompanied by large noise, so the shock signal, especially the vibration shock signal of early fault, is easy to be submerged by noise. In order to solve this problem, this paper proposes a constant Q transform binary energy weight (CQTBEW) algorithm based on constant Q transform and binary energy weight. Firstly, the vibration shock signal is analyzed by constant Q transform to obtain the time-frequency spectrum matrix. Secondly, the matrix is processed by frequency segmentation. The sliding window is set in the time axis, and the local extreme value is filtered and binarized. The energy time domain signal is obtained by superimposing the time domain signal, and the characteristic frequency is obtained by spectrum analysis diagnosis. Finally, the simulation signal and experimental signal are analyzed and verified, the results show that the CQTBEW method is feasible.
-
Key words:
- constant Q transform /
- binarization /
- shock signal /
- energy time domain signal
-
表 1 352226x2-2z轴承参数表
内径/mm 外径/mm 滚子个数 滚子直径/mm 接触角/(°) 130 230 20 24.74 8.8 -
[1] 王鹏. 复杂现场工况下旋转机械故障微弱特征提取与智能评估[D]. 天津: 天津大学, 2018WANG P. Weak fault feature extraction and intelligent fault evaluation for rotating machinery in actual complex working condition[D]. Tianjin: Tianjin University, 2018 (in Chinese) [2] 段杰. 滚动轴承微弱冲击信号的检测与特征提取方法研究[D]. 武汉: 华中科技大学, 2019DUAN J. Research on the detection and feature extraction of weak impact signal showing rolling element bearing fault[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese) [3] 韩帅. 强噪声背景下滚动轴承微弱特征提取及故障诊断研究[D]. 徐州: 中国矿业大学, 2018HAN S. Study on the weak feature extraction and fault diagnosis of rolling bearings under strong noise background[D]. Xuzhou: China University of Mining and Technology, 2018 (in Chinese) [4] GAO H Z, LIANG L, CHEN X G, et al. Feature extraction and recognition for rolling element bearing fault utilizing Short-Time Fourier transform and non-negative matrix Factorization[J]. Chinese Journal of Mechanical Engineering, 2015, 28(1): 96-105 doi: 10.3901/CJME.2014.1103.166 [5] 王天杨, 李建勇, 程卫东. 基于瞬时故障特征频率趋势线和故障特征阶比模板的变转速滚动轴承故障诊断[J]. 振动工程学报, 2015, 28(6): 1006-1014 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201506020.htmWANG T Y, LI J Y, CHENG W D. The instantaneous fault characteristic frequency and fault characteristic order template based fault diagnosis algorithm for rolling bearing under time-varying rotational speed[J]. Journal of Vibration Engineering, 2015, 28(6): 1006-1014 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201506020.htm [6] 赵发刚, 王翠珍, 葛钊, 等. 基于谱相关函数-Wigner-Ville谱的轴承分布故障信号分析[J]. 上海航天, 2017, 34(3): 122-130 https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201703017.htmZHAO F G, WANG C Z, GE Z, et al. Bearing distributed fault signal analysis based on spectral correlation function Wigner Ville spectrum[J]. Aerospace Shanghai, 2017, 34(3): 122-130 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201703017.htm [7] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544 doi: 10.1109/TSP.2013.2288675 [8] 赵东方. 局部均值分解方法及其在滚动轴承故障诊断中的应用研究[D]. 秦皇岛: 燕山大学, 2017ZHAO D F. Research on local mean decomposition and its application in rolling bearing fault diagnosis[D]. Qinhaungdao: Yanshan University, 2017 (in Chinese) [9] 杨建华, 韩帅, 张帅, 等. 强噪声背景下滚动轴承微弱故障特征信号的经验模态分解[J]. 振动工程学报, 2020, 33(3): 582-589 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202003017.htmYANG J H, HAN S, ZHANG S, et al. Empirical mode decomposition of weak fault characteristic signal of rolling bearing under strong noise background[J]. Journal of Vibration Engineering, 2020, 33(3): 582-589 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202003017.htm [10] 马增强, 张俊甲, 王梦奇, 等. 基于改进EEMD和谱峭度的滚动轴承故障诊断[J]. 图学学报, 2017, 38(5): 663-669 https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX201705004.htmMA Z Q, ZHANG J J, WANG M Q, et al. Rolling bearing fault diagnosis based on improved EEMD and spectrum kurtosis[J]. Journal of Graphics, 2017, 38(5): 663-669 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX201705004.htm [11] 樊高瞻, 周俊, 朱昆莉. 基于改进形态-小波阈值降噪的轴承复合故障声学诊断[J]. 振动与冲击, 2020, 39(12): 221-226, 288 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202012030.htmFAN G Z, ZHOU J, ZHU K L. An improved morphological-wavelet threshold de-noising method based acoustic diagnosis for bearing composite faults[J]. Journal of Vibration and Shock, 2020, 39(12): 221-226, 288 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202012030.htm [12] 张澎涛, 刘晋浩. 连续小波变换在机械故障特征提取中的应用[J]. 吉林大学学报(信息科学版), 2014, 32(2): 172-176 doi: 10.3969/j.issn.1671-5896.2014.02.010ZHANG P T, LIU J H. Application of CWT in mechanical fault feature extraction[J]. Journal of Jilin University (Information Science Edition), 2014, 32(2): 172-176 (in Chinese) doi: 10.3969/j.issn.1671-5896.2014.02.010 [13] 时培明, 孙鹏, 袁丹真. 基于非线性耦合双稳态随机共振的轴承微弱故障信号增强检测方法研究[J]. 计量学报, 2018, 39(3): 373-376 doi: 10.3969/j.issn.1000-1158.2018.03.17SHI P M, SUN P, YUAN D Z. Research on the enhanced detection method of bearing weak fault signal based on nonlinear coupled bistable stochastic resonance[J]. Acta Metrologica Sinica, 2018, 39(3): 373-376 (in Chinese) doi: 10.3969/j.issn.1000-1158.2018.03.17 [14] WANG P, WANG T Y. Energy weighting method and its application to fault diagnosis of rolling bearing[J]. Journal of Vibroengineering, 2017, 19(1): 223-236 doi: 10.21595/jve.2016.17338 [15] 韩雅欢. 基于Constant Q变换的音符起始点检测算法研究[D]. 南京: 南京邮电大学, 2013HAN Y H. Music onset detection based on Constant Q transform[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2013(in Chinese) [16] BROWN J C. Calculation of a constant Q spectral transform[J]. The Journal of the Acoustical Society of America, 1991, 89(1): 425-434 doi: 10.1121/1.400476 -