Study on Influence of Milling Parameters on Mechanical Properties of Carbon Fiber Reinforced Plastics
-
摘要: 为研究铣削参数对复合材料力学性能的影响, 开展了以主轴转速与进给量2个变量为试验因素的全因素铣削加工试验, 并统计分析了不同加工参数下复合材料试样的拉伸性能及压缩性能。试验结果表明: 复合材料的拉伸性能和铣削加工参数无关, 而压缩性能随着主轴转速的提高而降低, 与进给量无关。同时, 不同加工条件下的拉伸及压缩测试断口形貌表明, 过高的主轴转速会造成加工区域基体的热损伤, 分析认为这是造成材料压缩性能下降的原因。Abstract: For the research of the influence of the milling parameters on the mechanical performance of the components, a full factors experiment was carried out with two variables of spindle speed and feed rate per rotation, and statistics the tensile properties and compressive properties. The results of the experiments show that the tensile property of the composite does not relate to the milling parameters, while the compression property will decrease with the increasing of spindle speed, and does not relate to the feed rate. Meanwhile, the fracture morphology of the tensile tests and compressive tests under different cutting conditions shows that the excessive spindle speed will cause the matrix's thermal damage in the machining area, and the analysis suggests that the thermal damage causes the decreasing of the compressive properties.
-
表 1 加工参数
水平 因素 主轴转速n/(r·min-1) 每转进给f/(mm·r-1) 1 3 000 0.09 2 5 000 0.12 3 7 000 0.15 4 9 000 0.18 5 11 000 0.21 表 2 拉伸强度方差分析
来源 平方和 自由度 均方 F P 修正模型 32 230.42 24.00 1 342.93 2.43 < 0.01 转速 5 098.98 4.00 1 274.75 2.31 0.06 进给 2 028.91 4.00 207.23 0.92 0.46 误差 55 160.72 100.00 551.61 总和 58 918 067.25 125.00 R2=0.333 Adj R2=0.142 表 3 压缩强度方差分析
来源 平方和 自由度 均方 F P 修正模型 32 230.42 24.00 1 342.93 2.43 < 0.01 转速 39 554.83 4.00 9 888.71 5.11 < 0.01 进给 5 861.52 4.00 1 465.38 0.76 0.56 误差 162 686.25 84.00 1 936.74 总和 34 325 450.00 109.00 R2=0.369 Adj R2=0.317 -
[1] 刘卫平. 民用飞机复合材料结构制造技术[M]. 上海: 上海交通大学出版社, 2016LIU W P. Manufacturing technology for composite structures of civil aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2016 (in Chinese) [2] WAN M, LI S E, YUAN H, et al. Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): a review[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 34-55 doi: 10.1016/j.compositesa.2018.11.003 [3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12 doi: 10.3321/j.issn:1000-3851.2007.01.001DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001 [4] ALTIN KARATAŞ M, GÖKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318-326 doi: 10.1016/j.dt.2018.02.001 [5] TETI R. Machining of composite materials[J]. CIRP Annals, 2002, 51(2): 611-634 doi: 10.1016/S0007-8506(07)61703-X [6] 庄茁, 蒋持平. 工程断裂与损伤[M]. 北京: 机械工业出版社, 2004ZHUANG Z, JIANG C P. Engineering fracture and damage[M]. Beijing: China Machine Press, 2004 (in Chinese) [7] 李皓. 基于能量法CFRP切削机理与加工表面质量表征方法研究[D]. 天津: 天津大学, 2016LI H. Study on energy based cutting mechanism and surface quality evaluation method of CFRP machining[D]. Tianjin: Tianjin University, 2016 (in Chinese) [8] MORKAVUK S, KÖKLV U, BAǦCI M, et al. Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: a comparative study[J]. Composites Part B: Engineering, 2018, 147: 1-11 doi: 10.1016/j.compositesb.2018.04.024 [9] GHIDOSSI P, EL MANSORI M, PIERRON F. Edge machining effects on the failure of polymer matrix composite coupons[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(7-8): 989-999 doi: 10.1016/j.compositesa.2004.01.015 [10] ERIKSEN E. The influence of surface roughness on the mechanical strength properties of machined short-fibre-reinforced thermoplastics[J]. Composites Science and Technology, 2000, 60(1): 107-113 doi: 10.1016/S0266-3538(99)00102-5 [11] HADDAD M, ZITOUNE R, BOUGHERARA H, et al. Study of trimming damages of CFRP structures in function of the machining processes and their impact on the mechanical behavior[J]. Composites Part B: Engineering, 2014, 57: 136-143 doi: 10.1016/j.compositesb.2013.09.051 [12] HEJJAJI A, ZITOUNE R, CROUZEIX L, et al. Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior[J]. Wear, 2017, 376-377: 1356-1364 doi: 10.1016/j.wear.2017.02.024 [13] SQUIRES C A, NETTING K H, CHAMBERS A R. Understanding the factors affecting the compressive testing of unidirectional carbon fibre composites[J]. Composites Part B: Engineering, 2007, 38(4): 481-487 doi: 10.1016/j.compositesb.2006.08.002 [14] Standard test method for tensile properties of polymer matrix composite materials[Z]. [15] Standard test method for compressive properties of polymer matrix composite materials using a Combined Loading Compression (CLC) Test Fixture[Z]. [16] 徐才华. 碳纤维增强树脂复合材料制备及其性能研究[D]. 郑州: 郑州大学, 2014XU C H. Preparation and properties research on composites made of resins reinforced by carbon fiber[D]. Zhengzhou: Zhengzhou University, 2014 (in Chinese) [17] 杨序纲, 吴琪琳. 复合材料的界面行为[M]. 北京: 化学工业出版社, 2019YANG X G, WU Q L. Interfacial behaviours in composites[M]. Beijing: Chemical Industry Press, 2019 (in Chinese) [18] 付成龙, 陈利, 张雅璐. 几何尺寸与温度对CFRP筋材力学性能的影响[J]. 玻璃钢/复合材料, 2016(5): 74-79 doi: 10.3969/j.issn.1003-0999.2016.05.013FU C L, CHEN L, ZHANG Y L. Evaluation of geometrical size and temperature effect on the mechanical behavior of CFRP bars[J]. Fiber Reinforced Plastics/Composites, 2016(5): 74-79 (in Chinese) doi: 10.3969/j.issn.1003-0999.2016.05.013 [19] HADDAD M, ZITOUNE R, EYMA F, et al. Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 142-154 doi: 10.1016/j.compositesa.2014.07.005 [20] PRABHAKAR P, WAAS A M. Micromechanical modeling to determine the compressive strength and failure mode interaction of multidirectional laminates[J]. Composites Part A: Applied Science and Manufacturing, 2013, 50: 11-21 doi: 10.1016/j.compositesa.2013.03.006 [21] 章力. 基于有限元方法的复合材料压缩强度分散性研究[D]. 长沙: 国防科学技术大学, 2016ZHANG L. Research on dispersity of compressive strength of FRP based on finite element method[D]. Changsha: National University of Defense Technology, 2016 (in Chinese) -