Influence of Shaft Diameter Ratio of Eleven Plunger Aviation Pump Rotor System on Power to Weight Ratio
-
摘要: 为研究不同轴径比转子系统对航空泵功重比的影响, 建立了十一柱塞航空液压泵缸体、传动轴、支撑轴承这3部分组成的转子系统。首先, 建立了泵排量、流量和功率的计算模型, 基于排量不变原则, 设计了16组不同轴径比的航空柱塞泵转子系统, 并对缸体强度进行理论校核; 然后建立了转子系统的功重比计算模型; 最后, 通过对缸体强度有限元仿真计算和功重比理论计算, 得到了重构建的不同轴径比缸体能够满足转子系统的强度要求和不同轴径比转子系统对功重比的影响规律。为后续航空液压泵的不平衡响应分析以及缸体结构优化设计提供了理论支撑。Abstract: In order to study the influence of rotor systems with different shaft diameter ratios on the power-to-weight ratio of aviation plunger pumps, a rotor system consisting of three parts of the eleven-plunger aviation hydraulic pump cylinder block, drive shaft and support bearing is modeled in this paper. First, a calculation model for pump displacement, flow and power is established. Based on the principle of constant displacement, sixteen groups of aviation plunger pump rotor systems with different shaft diameter ratios are designed, and the cylinder strength is theoretically checked. Then, the power-to-weight ratio calculation model of the rotor system is established. Finally, through the finite element simulation of the cylinder block strength and the theoretical calculation of the power-to-weight ratio, it is concluded that the rebuilt cylinder blocks with different shaft diameter ratios can meet the strength requirements and requirements of the rotor system. The influence law of the rotor system with different shaft diameter ratios on power to weight ratio is obtained, which provides theoretical support for subsequent analysis of unbalanced response of aviation hydraulic pumps and optimization design of cylinder structure.
-
Key words:
- aviation plunger pump /
- power-to-weight ratio /
- finite element analysis /
- rotor system
-
表 1 轴径比变化参数表
模型标号 Δi 现轴径比 模型标号 Δi 现轴径比 1 0.00 0.606 9 0.008 0.598 2 0.001 0.605 10 0.009 0.597 3 0.002 0.604 11 0.01 0.596 4 0.003 0.603 12 0.02 0.586 5 0.004 0.602 13 0.03 0.576 6 0.005 0.601 14 0.04 0.566 7 0.006 0.600 15 0.05 0.556 8 0.007 0.599 16 0.1 0.506 表 2 各转子系统功重比影响因子
模型编号 轴径比ir 影响因子 模型编号 轴径比ir 影响因子 1 0.606 0.109 9 0.598 0.106 2 0.605 0.109 10 0.597 0.106 3 0.604 0.108 11 0.596 0.105 4 0.603 0.108 12 0.586 0.102 5 0.602 0.108 13 0.576 0.099 6 0.601 0.107 14 0.566 0.095 7 0.600 0.107 15 0.556 0.092 8 0.599 0.106 16 0.506 0.076 -
[1] 王占林, 陈斌, 裘丽华. 飞机液压系统的主要发展趋势[J]. 液压气动与密封, 2000(1): 14-18, 51 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQD200001003.htmWANG Z L, CHEN B, QIU L H. Trends of future aircraft hydraulic system[J]. Hydraulics Pnenmatics & Seals, 2000(1): 14-18, 51 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYQD200001003.htm [2] MANRING N D, MEHTA V S, NELSON B E, et al. Increasing the power density for axial-piston swash-plate type hydrostatic machines[J]. Journal of Mechanical Design, 2013, 135(7): 071002 doi: 10.1115/1.4023924 [3] 张红娟, 权龙, 李斌. 永磁同步电动机直驱泵控差动缸位置伺服系统性能研究[J]. 中国电机工程学报, 2010, 30(24): 107-112 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201024019.htmZHANG H J, QUAN L, LI B. Performance of differential cylinder position servo system controlled by permanent magnet synchronous motor driven pump[J]. Proceedings of the CSEE, 2010, 30(24): 107-112 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201024019.htm [4] 邓海顺, 王传礼, 张立祥. 平衡式两排轴向柱塞泵流量脉动研究[J]. 农业机械学报, 2014, 45(5): 305-309 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201405047.htmDENG H S, WANG C L, ZHANG L X. Study on flow ripple of balanced two-ring axial piston pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 305-309 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201405047.htm [5] ZAWISTOWSKI T, KLEIBER M. Gap flow simulation methods in high pressure variable displacement axial piston pumps[J]. Archives of Computational Methods in Engineering, 2017, 24(3): 519-542 doi: 10.1007/s11831-016-9180-5 [6] HUANG C C. CASPAR based slipper performance prediction in axial piston pumps[C]//Proceeding of 3rd FPNI PhD Symposium on Fluid Power. Terrassa: E Codina, 2004: 229-238 [7] 徐兵, 潮群, 张军辉, 等. 基于平衡系数的滑靴优化模型[J]. 浙江大学学报(工学版), 2015, 49(6): 1009-1014 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201506003.htmXU B, CHAO Q, ZHANG J H, et al. Slipper optimization model based on equilibrium coefficient[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(6): 1009-1014 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201506003.htm [8] 徐兵, 张军辉, 杨华勇. 基于虚拟样机的轴向柱塞泵柱塞副仿真分析[J]. 兰州理工大学学报, 2010, 36(3): 31-37 doi: 10.3969/j.issn.1673-5196.2010.03.008XU B, ZHANG J H, YANG H Y. Simulative analysis of piston-cylinder pair of axial piston pump based on virtual prototype[J]. Journal of Lanzhou University of Technology, 2010, 36(3): 31-37 (in Chinese) doi: 10.3969/j.issn.1673-5196.2010.03.008 [9] 徐兵, 李春光, 张军辉, 等. 基于虚拟样机的轴向柱塞泵柱塞有限元分析[J]. 机床与液压, 2010, 38(11): 77-78, 98 doi: 10.3969/j.issn.1001-3881.2010.11.023XU B, LI C G, ZHANG J H, et al. Finite element analysis on piston of axial piston pump based on virtual prototype[J]. Machine Tool & Hydraulics, 2010, 38(11): 77-78, 98 (in Chinese) doi: 10.3969/j.issn.1001-3881.2010.11.023 [10] 徐兵, 李春光, 张斌, 等. 基于虚拟样机的轴向柱塞泵压力脉动特性研究[J]. 中国机械工程, 2010, 21(10): 1203-1207 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201010015.htmXU B, LI C G, ZHANG B, et al. Research on pressure puleation characteristics of axial piston pump based on virtual prototype[J]. China Mechanical Engineering, 2010, 21(10): 1203-1207 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201010015.htm [11] YANG G Z, JIANG J H. Power characteristics of a variable hydraulic transformer[J]. Chinese Journal of Aeronautics, 2015, 28(3): 914-931 doi: 10.1016/j.cja.2015.04.008 [12] 李鑫, 王少萍, 黄伯超. 航空柱塞泵流量脉动仿真分析与结构优化[J]. 兰州理工大学学报, 2010, 36(3): 60-64 doi: 10.3969/j.issn.1673-5196.2010.03.014LI X, WANG S P, HUANG B C. Simulation analysis of flow fluctuation in aviation piston pump and its structure optimization[J]. Journal of Lanzhou University of Technology, 2010, 36(3): 60-64 (in Chinese) doi: 10.3969/j.issn.1673-5196.2010.03.014 [13] 贺伟, 黄家海, 郝惠敏, 等. 变排量非对称轴向柱塞泵动态特性分析[J]. 液压与气动, 2019(10): 20-25 doi: 10.11832/j.issn.1000-4858.2019.10.003HE W, HUANG J H, HAO H M, et al. Research on dynamic characteristics of variable-displacement asymmetric axial piston pump[J]. Chinese Hydraulics & Pneumatics, 2019(10): 20-25 (in Chinese) doi: 10.11832/j.issn.1000-4858.2019.10.003 [14] 权凌霄, 刘嵩, 焦宗夏, 等. 斜盘式轴向柱塞泵后壳体机械振动传递路径研究[J]. 振动工程学报, 2017, 30(4): 587-595 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201704009.htmQUAN L X, LIU S, JIAO Z X, et al. Mechanical vibration transfer path analysis of swash-plate axial piston pump back shell[J]. Journal of Vibration Engineering, 2017, 30(4): 587-595 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201704009.htm [15] 闻邦椿. 机械设计手册五[M]. 5版. 北京: 机械工业出版社, 2010WEN B C. Mechanical design manual[M]. 5th ed. Beijing: Mechanical Industry Press, 2010 (in Chinese) -