Numerical Simulation of Herringbone Plate Heat Exchanger with Pin-Fin Rows
-
摘要: 设计了一系列具有不同尺寸扰流柱的人字形板式换热器, 基于COMSOL软件研究其传热效率。应用了冷热双通道模型, 并创新性的提出了在人字形纹波中间添加空心的扰流柱。通过数值模拟方法研究了冷热双通道模型中的多物理场(流体流动和温度)。仿真结果表明, 扰流柱可以减小通道两侧速度较小的流动区域, 从而使温度传递更加均匀。此外, 内置扰流柱的通道出口处的压力损失很小。为了进一步降低压力损失, 可以在出口处不设置扰流柱。同时, 与传统板片相比, 内置扰流柱板片可将传热效率提高3%。Abstract: A series of plate heat exchangers with different sizes of pin-fin rows were designed to study their heat transfer efficiency with the COMSOL software. The hot and cold dual-channel model is applied and hollow pin-fin rows are innovatively added to ripples. Multiphysics (fluid flow and temperature) in the hot and cold dual-channel model is studied by numerical simulation method. The simulation results show that at a slow speed, the pin-fin rows can reduce the area on both sides of the channel, thus transferring the temperature more uniformly. Furthermore, the pressure at the outlet of the channel with the pin-fin rows did not change much. To reduce pressure loss, the pin-fin rows should not be installed at the outlet. The simulation results also show that the pin-fin rows can increase the heat transfer efficiency by 3% compared with the traditional plate.
-
表 1 板片的物理结构参数
结构参数 板片类型 M A B C D 波纹高度R/mm 3.5 3.5 3.5 3.5 3.5 波纹间距S/mm 35 35 35 35 35 波纹倾角α/(°) 32 32 32 32 32 扰流柱直径D/mm 0 2 4 6 8 表 2 两种板片的出入口温度
K M型 A型 B型 C型 D型 热通道 入口 372.83 372.82 372.82 372.82 372.81 出口 334.86 335.59 335.18 333.98 333.31 冷通道 入口 293.68 293.69 293.68 293.67 293.67 出口 334.29 333.64 333.82 334.63 335.07 表 3 不同换热器的参数
换热器类型 出入口 V/(m·s-1) α/(W·(m2·K)-1) M型 热 0.5 17 650 冷 0.5 13 550 C型 热 0.5 18 508 冷 0.5 16 205 枕式板式
换热器热 1.87 18 050 冷 1.15 13 940 -
[1] 王伟, 陈亮, 何富均. 板翅式换热器封头强度的分析设计研究[J]. 中国机械工程, 2011, 22(16): 1988-1992 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201116021.htmWANG W, CHEN L, HE F J. Research on DBA of strength for a plate-fin heat exchanger header[J]. China Mechanical Engineering, 2011, 22(16): 1988-1992 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201116021.htm [2] AYUB Z H, KHAN T S, SALAM S, et al. Literature survey and a universal evaporation correlation for plate type heat exchangers[J]. International Journal of Refrigeration, 2019, 99: 408-418 doi: 10.1016/j.ijrefrig.2018.09.008 [3] NIROOMAND R, SAIDI M H, HANNANI S K. A quasi- three-dimensional thermal model for multi-stream plate fin heat exchangers[J]. Applied Thermal Engineering, 2019, 157: 113730 doi: 10.1016/j.applthermaleng.2019.113730 [4] YANG H Z, LI Y Y, YANG Y, et al. Effect of surface efficiency on the thermal design of plate-fin heat exchangers with passages stack arrangement[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118494 doi: 10.1016/j.ijheatmasstransfer.2019.118494 [5] DU J, ZHAO H T. Numerical simulation of a plate-fin heat exchanger with offset fins using porous media approach[J]. Heat and Mass Transfer, 2018, 54(3): 745-755 doi: 10.1007/s00231-017-2168-3 [6] CAMILLERI R, OGAJI S, PILIDIS P. Applying heat pipes to a novel concept aero engine: Part 2-Design of a heat-pipe heat exchanger for an intercooled-recuperated aero engine[J]. The Aeronautical Journal, 2011, 115(1169): 403-410 doi: 10.1017/S0001924000006023 [7] MOGHADDAM D G, FAUCHOUX M, BESANT R W, et al. Investigating similarity between a small-scale liquid-to-air membrane energy exchanger (LAMEE) and a full-scale (100 L/s) LAMEE: Experimental and numerical results[J]. International Journal of Heat and Mass Transfer, 2014, 77: 464-474 doi: 10.1016/j.ijheatmasstransfer.2014.05.032 [8] GHERASIM I, TAWS M, GALANIS N, et al. Numerical and experimental investigation of buoyancy effects in a plate heat exchanger[J]. Applied Thermal Engineering, 2013, 51(1-2): 347-363 doi: 10.1016/j.applthermaleng.2012.09.009 [9] LI W, LI H X, LI G Q, et al. Numerical and experimental analysis of composite fouling in corrugated plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 2013, 63: 351-360 doi: 10.1016/j.ijheatmasstransfer.2013.03.073 [10] VÄLIKANGAS T, SINGH S, SØRENSEN K, et al. Fin-and-tube heat exchanger enhancement with a combined herringbone and vortex generator design[J]. International Journal of Heat and Mass Transfer, 2018, 118: 602-616 doi: 10.1016/j.ijheatmasstransfer.2017.11.006 [11] 王茜. 人字形板式换热器波纹通道流动及传热机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2018WANG Q. Study on the flow and heat transfer mechanism in the corrugated channel of chevron plate heat exchanger[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese) [12] ARSENYEVA O, PIPER M, ZIBART A, et al. Investigation of heat transfer and hydraulic resistance in small-scale pillow-plate heat exchangers[J]. Energy, 2019, 181: 1213-1224 doi: 10.1016/j.energy.2019.05.099 [13] SHARIF A, AMEEL B, T'JOLLYN I, et al. Comparative performance assessment of plate heat exchangers with triangular corrugation[J]. Applied Thermal Engineering, 2018, 141: 186-199 doi: 10.1016/j.applthermaleng.2018.05.111 [14] LOZANO A, BARRERAS F, FUEYO N, et al. The flow in an oil/water plate heat exchanger for the automotive industry[J]. Applied Thermal Engineering, 2008, 28(10): 1109-1117 doi: 10.1016/j.applthermaleng.2007.08.015 [15] LI K, WEN J, YANG H Z, et al. Sensitivity and stress analysis of serrated fin structure in plate-fin heat exchanger on cryogenic condition[J]. International Journal of Thermal Sciences, 2019, 145: 106013 doi: 10.1016/j.ijthermalsci.2019.106013 [16] 刘建. 典型传热结构强化传热与减阻的流动控制研究[D]. 西安: 西北工业大学, 2015LIU J. The flow manipulation for heat transfer enhancement and drag reduction in typical heat transfer enhancement structures[D]. Xi'an: Northwestern Polytechnical University, 2015 (in Chinese) [17] SAEIDI R, NOOROLLAHI Y, ESFAHANIAN V. Numerical simulation of a novel spiral type ground heat exchanger for enhancing heat transfer performance of geothermal heat pump[J]. Energy Conversion and Management, 2018, 168: 296-307 doi: 10.1016/j.enconman.2018.05.015 [18] JYOTHIPRAKASH K H, KRISHNEGOWDA Y T, VENKATARAM K N, et al. Effect of ambient heat-in-leak on the performance of three-fluid cross-flow heat exchanger[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018, 28(9): 2012-2035 [19] PAN M Q, WANG H Q, ZHONG Y J, et al. Experimental investigation of the heat transfer performance of microchannel heat exchangers with fan-shaped cavities[J]. International Journal of Heat and Mass Transfer, 2019, 134: 1199-1208 doi: 10.1016/j.ijheatmasstransfer.2019.01.140 [20] GHOLAMI A, MOHAMMED H A, WAHID M A, et al. Parametric design exploration of fin-and-oval tube compact heat exchangers performance with a new type of corrugated fin patterns[J]. International Journal of Thermal Sciences, 2019, 144: 173-190 doi: 10.1016/j.ijthermalsci.2019.05.022 [21] PAN M Q, ZHONG Y J, XU Y F. Numerical investigation of fluid flow and heat transfer in a plate microchannel heat exchanger with isosceles trapezoid-shaped reentrant cavities in the sidewall[J]. Chemical Engineering and Processing-Process Intensification, 2018, 131: 178-189 doi: 10.1016/j.cep.2018.07.018 [22] CHEN J Y, ZHU K D, LUO X L, et al. Application of liquid-separation condensation to plate heat exchanger: Comparative studies[J]. Applied Thermal Engineering, 2019, 157: 113739 [23] CAI Y T, TAY K, ZHENG Z M, et al. Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review[J]. Applied Energy, 2018, 230: 1447-1544 -