Study on Walking Gait Design and Simulation Analysis of Hexapod Bionic Robot
-
摘要: 为提高六足机器人对崎岖不平地势的适应能力, 开发了一款基于树莓派视觉导航的六足仿生机器人, 利用三维软件SolidWorks设计六足仿生机器人的机械结构; 通过建立D-H坐标系和步态模型, 对机器人进行了正-逆运动学方程推导, 构建六足仿生机器人的运动学模型; 运用多项式差值拟合对六足仿生机器人的摆动相和支撑相进行步态规划; 使用MATLAB-ADAMS完成六足仿生机器人的位姿仿真, 并进行六足仿生机器人实物验证。实验结果表明: 该步态设计能有效对六足仿生机器人腿部运动轨迹进行跟踪, 验证了步态设计的正确性和有效性, 为改善多足类机器人行走提供有益参考。Abstract: In order to improve the ability of hexapod robot to adapt to rough terrain, a hexapod bionic robot based on the raspberry PI visual navigation was developed. The mechanical structure of the hexapod bionic robot was designed with the 3D software SolidWorks. By establishing the D-H coordinate system and gait model, the forward and inverse kinematics equation of the robot and the kinematic model for the hexapod bionic robot was constructed. The gait planning of the swing and support phase of hexapod bionic robot was carried out with the polynomial difference fitting. MATLAB-ADAMS was used to jointly complete the pose simulation of the hexapod bionic robot, and the verification of the hexapod bionic robot was carried out. The experimental results show that the gait design can effectively track the leg trajectory of the hexapod bionic robot, which verifies the correctness and effectiveness of the gait design, and provides reference for improving the walking of the multi legged robot.
-
Key words:
- raspberry pie /
- hexapod bionic robot /
- gait design /
- kinematic model /
- pose simulation
-
表 1 六足仿生机器人各零件参数
序号 参数名称 材料 长度/mm 质量/kg 1 六边形机身 铝合金 400 0.80 2 连杆L1 铝合金 5 0.02 3 连杆L2 铝合金 100 0.42 4 连杆L3 铝合金 130 0.56 5 防滑足套 ABS 20 0.01 6 机械手爪 铝合金 80 0.40 表 2 CDS5516电机主要参数
参数名称 数值 扭矩 1.568 N·m 输出转速 0.16 s/60° 直流电压 6.0~16 V 位置分辨率 0.32° 可串联单元 254个 通讯波特率 1 M 伺服更新率 0.25 kHz 表 3 腿部关节D-H参数
连杆n 连杆夹角θn 连杆扭角αn 连杆距离dn 连杆长度an 1 θ1 90° 0 L1 2 θ2 0 0 L2 3 θ3 0 0 L3 -
[1] 谭民, 王硕. 机器人技术研究进展[J]. 自动化学报, 2013, 39(7): 963-972 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201307003.htmTAN M, WANG S. Research progress on robotics[J]. Acta Automatica Sinica, 2013, 39(7): 963-972 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201307003.htm [2] CULLY A, CLUNE J, TARAPORE D, et al. Robots that can adapt like animals[J]. Nature, 2015, 521(7553): 503-507 doi: 10.1038/nature14422 [3] IJSPEERT A J. Biorobotics: Using robots to emulate and investigate agile locomotion[J]. Science, 2014, 346(6206): 196-203 doi: 10.1126/science.1254486 [4] PFEIFER R, LUNGARELLA M, ⅡDA F. Self-organization, embodiment, and biologically inspired robotics[J]. Science, 2007, 318(5853): 1088-1093 doi: 10.1126/science.1145803 [5] 李满宏, 张明路, 张建华, 等. 六足机器人关键技术综述[J]. 机械设计, 2015, 32(10): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201510001.htmLI M H, ZHANG M L, ZHANG J H, et al. Review on key technology of the hexapod robot[J]. Journal of Machine Design, 2015, 32(10): 1-8 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201510001.htm [6] 谢冬福, 罗玉峰, 石志新, 等. 六足农业机器人并联腿结构设计与位置分析[J]. 机械传动, 2020, 44(6): 61-67 https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202006012.htmXIE D F, LUO Y F, SHI Z X, et al. Structural design and position analysis of parallel leg of hexapod agriculture robot[J]. Journal of Mechanical Transmission, 2020, 44(6): 61-67 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202006012.htm [7] 卢展, 蒋刚, 李晨, 等. 六足机器人腿部损伤的容错行走研究[J]. 机械设计与研究, 2020, 36(1): 68-74 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY202001022.htmLU Z, JIANG G, LI C, et al. Study on fault-tolerant walking of hexapod robot with leg injury[J]. Machine Design & Research, 2020, 36(1): 68-74 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY202001022.htm [8] 白颖, 蒋庆斌, 莫莉萍, 等. 六足仿蜘蛛机器人的结构设计与仿真分析[J]. 机电工程, 2019, 36(7): 732-735, 743 doi: 10.3969/j.issn.1001-4551.2019.07.014BAI Y, JIANG Q B, MO L P, et al. Structural design and simulation analysis of hexapod bionic spider robot[J]. Journal of Mechanical & Electrical Engineering, 2019, 36(7): 732-735, 743 (in Chinese) doi: 10.3969/j.issn.1001-4551.2019.07.014 [9] ZHA F S, CHEN C, GUO W, et al. A free gait controller designed for a heavy load hexapod robot[J]. Advances in Mechanical Engineering, 2019, 11(3): 1-17 [10] 张陈曦, 吴胜权, 何永, 等. 仿生步行机器人腿部八连杆机构轨迹优化[J]. 机械传动, 2018, 42(6): 39-43 https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201806009.htmZHANG C X, WU S Q, HE Y, et al. Trajectory optimization of eight-link mechanism for legs of walking bio-robot[J]. Journal of Mechanical Transmission, 2018, 42(6): 39-43 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201806009.htm [11] ZHANG L, WANG F C, GAO Z H, et al. Research on the stationarity of hexapod robot posture adjustment[J]. Sensors, 2020, 20(10): 2859 doi: 10.3390/s20102859 [12] 曹雏清, 熊一帆. 六足机器人爬楼步态的力学仿真分析[J]. 现代制造工程, 2019(10): 40-44 https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201910011.htmCAO C Q, XIONG Y F. Dynamic simulation analysis of six-legged robot in stair climbing[J]. Modern Manufacturing Engineering, 2019(10): 40-44 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201910011.htm [13] KOLTER J Z, NG A Y. The stanford LittleDog: A learning and rapid replanning approach to quadruped locomotion[J]. The International Journal of Robotics Research, 2011, 30(2): 150-174 [14] 樊启润, 唐彪, 孙开鑫, 等. 六足仿生机器人的设计与实现[J]. 计算机测量与控制, 2019, 27(5): 245-250, 270 https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201905054.htmFAN Q R, TANG B, SUN K X, et al. Design and implementation of hexapod bionic robot[J]. Computer Measurement & Control, 2019, 27(5): 245-250, 270 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201905054.htm [15] 尹晓琳. 六足仿生机器人步态规划及其控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2013YIN X L. Research on gait planning and control strategy for biomimetic hexapod robot[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese) -