Numerical Simulation Study on Aerodynamic Drag of High-speed Subway Train in Interval Tunnel
-
摘要: 针对高速地铁列车空气阻力直接影响列车运行速度、能耗及安全,采用三维数值模拟方法对6编组全尺寸列车运行在设置有通风竖井的区间隧道的列车空气阻力进行研究,对隧道内空气阻力随时间变化、列车各节车厢阻力的分布特性、每节车厢转向架在整车阻力所占的比重情况进行分析。研究结果表明:列车逐渐向竖井靠近的时间段内,阻力系数一直在下降,最小值为1.57;在经过竖井的时间段,阻力系数大大增加,最大值为4.85,是最小值的3.08倍。列车匀速行驶时,尾车空气阻力在整车中占比最大,头车略小,分别为39.6%和24.7%;过竖井正下方时,头车空气阻力占比是整车的一半之多,达到了53.9%。过竖井前,前5节车厢转向架阻力在35%~45%内波动,尾车的仅占12.7%;过竖井时,4车厢转向架阻力占比最大,最大值为52.7%,头车的降到了17.0%;过竖井后,中间4车厢转向架区域占比最大,头车尾车的占比略小。Abstract: As the aerodynamic drag directly affects the maximum running speed of high-speed train, energy consumption and safety, the three-dimensional numerical simulation method was used to study the train aerodynamic drag of 6 full-size trains running in the interval tunnel with ventilation shaft, and the change of air resistance with time in the tunnel, the resistance distribution characteristics of each train carriage, and the proportion of each carriage bogie in the whole vehicle resistance were analyzed in detail. The results indicate that during the time when the train gradually approached the shaft, the drag coefficient was always decreasing, and the minimum value was 1.57; in the time period after the shaft, the resistance coefficient increases greatly, with the maximum value of 4.85, which is 3.08 times of the minimum value; when the train travels at a constant speed, the air resistance of the tail car takes the largest proportion in the whole vehicle, and the head car is slightly smaller, which is 39.6% and 24.7% respectively; when passing directly below the shaft, the head car′s air resistance accounted for as much as half of the entire vehicle, reaching 53.9%; before passing through the shaft, the bogie resistance of the first five carriages fluctuated between 35% and 45%, while the resistance of the last carriage accounted for only 12.7%; when passing through the shaft, the resistance ratio of bogie in 4 carriages is the largest, with a maximum value of 52.7%, and that of the head car is reduced to 17.0%; after passing through the shaft, the bogie area of the middle 4 cars takes up the largest proportion, and the proportion of the head and tail cars is slightly smaller.
-
表 1 车体不同部位在不同时刻时所受空气阻力
车体部位 F/N 车体部位 F/N 第42 s 第45 s 第48 s 第42 s 第45 s 第48 s 整车 12 662.8 20 791.8 31 315.4 4车车身 597.6 338.8 1 600.7 1车车身 1 549.3 9 354.2 10 263.8 转向架7 163.0 143.4 466.2 转向架1 531.9 1 127.2 1 035.3 转向架8 154.6 234.5 773.1 转向架2 341.5 784.5 770.7 5车车身 750.1 594.1 2197.6 2车车身 558.6 1 586.4 1 467.6 转向架9 235.2 205.5 877.4 转向架3 208.7 501.7 502.2 转向架10 401.7 269.2 1 024.0 转向架4 179.7 413.4 403.9 6车车身 5348.5 1629.2 6 214.1 3车车身 530.7 2037.2 1 176.3 转向架11 377.1 391.0 947.3 转向架5 147.9 332.2 357.3 转向架12 399.6 471.3 764.5 转向架6 186.9 378.0 473.3 表 2 每节车厢对应转向架的空气阻力占比
% 位置 第42 s 第45 s 第48 s A B A+B A B A+B A B A+B 1车 22.0 14.1 36.1 10.0 7.0 17.0 8.6 6.4 15.0 2车 22.0 19.0 41.0 20.1 16.5 36.6 21.2 17.0 38.2 3车 17.1 21.6 38.7 12.1 13.8 25.9 17.8 23.6 41.4 4车 17.8 16.9 34.7 20.0 32.7 52.7 16.4 27.2 43.6 5车 17.0 29.0 46.0 19.2 25.2 44.4 21.4 25.0 46.4 6车 6.2 6.5 12.7 15.7 18.9 34.6 12.0 9.6 21.6 -
[1] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6-7): 469-514 doi: 10.1016/S0376-0421(02)00029-5 [2] RABANI M, FAGHIH A K. Numerical analysis of airflow around a passenger train entering the tunnel[J]. Tunnelling and Underground Space Technology, 2015, 45: 203-213 doi: 10.1016/j.tust.2014.10.005 [3] 赵晶, 李人宪. 高速列车进入隧道的气动作用数值模拟[J]. 西南交通大学学报, 2009, 44(1): 96-100 https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200901019.htmZHAO J, LI R X. Numerical analysis of aerodynamics of high-speed trains running into tunnels[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 96-100 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200901019.htm [4] OGAWA T, FUJⅡ K. Numerical simulation of compressible flow induced by a train moving in a tunnel[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Orlando: AIAA, 1993 [5] CHU C R, CHIEN S Y, WANG C Y, et al. Numerical simulation of two trains intersecting in a tunnel[J]. Tunnelling and Underground Space Technology, 2014, 42: 161-174 doi: 10.1016/j.tust.2014.02.013 [6] NIU J Q, ZHOU D, LIANG X F, et al. Numerical study on the aerodynamic pressure of a metro train running between two adjacent platforms[J]. Tunnelling and Underground Space Technology, 2017, 65: 187-199 doi: 10.1016/j.tust.2017.03.006 [7] 王一伟, 杨国伟, 黄晨光. 高速列车通过隧道时气动阻力特性的CFD仿真分析[J]. 中国铁道科学, 2012, 33(S1): 33-38WANG Y W, YANG G W, HUANG C G. CFD simulation analysis on the aerodynamic drag characteristics of high-speed train running through tunnel[J]. China Railway Science, 2012, 33(S1): 33-38 (in Chinese) [8] 陈鹏飞. 地铁隧道空气动力学特性及最大运行速度研究[D]. 北京: 北京交通大学, 2016CHEN P F. Research on aerodynamic characteristics of subway tunnels and its maximum train running speed[D]. Beijing: Beijing Jiaotong University, 2016 (in Chinese) [9] 段修平, 杨永刚, 王绍军, 等. 高速列车隧道会车空气阻力数值模拟研究[J]. 应用力学学报, 2020, 37(3): 1099-1105 https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202003024.htmDUAN X P, YANG Y G, WANG S J, et al. Numerical simulation on air resistance of high speed trains crossing in tunnel[J]. Chinese Journal of Applied Mechanics, 2020, 37(3): 1099-1105 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202003024.htm [10] 唐闻天, 王丽丽. 快速地铁车辆气动效应及车辆设计参数分析[J]. 城市轨道交通研究, 2019, 22(5): 138-142 https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201905039.htmTANG W T, WANG L L. Analysis on aerodynamic effects and design parameters in rapid metro vehicle design[J]. Urban Mass Transit, 2019, 22(5): 138-142 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201905039.htm [11] 刘冬雪, 蒋雅男, 杨明智. 加减速时地铁列车隧道气动性能研究[J]. 铁道科学与工程学报, 2018, 15(1): 178-187 https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201801025.htmLIU D X, JIANG Y N, YANG M Z. Study on tunnel aerodynamic of subway train during acceleration[J]. Journal of Railway Science and Engineering, 2018, 15(1): 178-187 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201801025.htm [12] 杨永刚, 杜云超, 梅元贵. 单列高速列车通过隧道空气阻力特性数值模拟研究[J]. 铁道科学与工程学报, 2018, 15(11): 2755-2763 https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811005.htmYANG Y G, DU Y C, MEI Y G. Numerical simulation of aerodynamic drag of single high-speed train passing through a tunnel[J]. Journal of Railway Science and Engineering, 2018, 15(11): 2755-2763 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811005.htm [13] 陶伟明. 列车通过隧道空气阻力研究[D]. 成都: 西南交通大学, 2011TAO W M. Research on air resistance when train passing through tunnel[D]. Chengdu: Southwest Jiaotong University, 2011 (in Chinese) [14] 贾永兴, 景璟, 梅元贵. 单列高速列车通过隧道空气阻力数值模拟研究[J]. 机械工程学报, 2020, 56(4): 193-200 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004024.htmJIA Y X, JING J, MEI Y G. Numerical simulation on air resistance of high-speed train passing through tunnel[J]. Journal of Mechanical Engineering, 2020, 56(4): 193-200 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004024.htm [15] TOGASHI F, ITO Y, NAKAHASHI K, et al. Overset unstructured grids method for viscous flow computations[J]. AIAA Journal, 2006, 44(7): 1617-1623 doi: 10.2514/1.4292 -