Parameter Design of Anti-vibration Exoskeleton Damping Mechanism for Operating Hand-held Power Tools
-
摘要: 针对手持振动工具对人体的负面影响和现有减振措施不足, 提出一种轻量化、高舒适性的携行式上肢抗振外骨骼作为新型个体防护装备, 并对外骨骼核心部件减振器进行参数设计, 提高了减振性能。利用直角坐标法求解机构的运动方程, 根据拉格朗日原理建立人机耦合系统运动微分方程, 分析得到影响抗振外骨骼减振性能的关键参数。基于人机耦合力学模型和外骨骼初始样机参数, 使用Minitab以标准正交表L27(313)设计考虑交互作用的5因素3水平正交仿真试验。ADAMS仿真试验结果表明: 各因素及其部分交互项对合力F的影响显著性排序为l2/l1>l2/l1×c1>l2/l1×c2>c2>c1>c1×c2>k2>k1; 减振器安装位置l2/l1是影响减振性能的主要因素; 结合交互作用分析二元图, 试验范围内因素最佳水平组合为l2/l1(1)k1(1)c1(3)k2(1)c2(3)。最佳水平组合下外骨骼达到较好的减振效果。Abstract: In view of the negative impact of hand-held vibration tools on the human body and the lack of existing vibration reduction measures, a lightweight and comfortable portable upper extremity anti-vibration exoskeleton was proposed as new personal protective equipment. The structural parameter of its core component damper is designed to improve the vibration reduction performance. The rectangular coordinate method is used to build and solve the equation for the motion of the mechanism. According to the Lagrange principle, the differential equation of motion of the man-machine coupled system is established, and the key parameters that affect the anti-vibration exoskeleton damping performance are analyzed. Based on the mechanical model of human-machine coupling and the initial prototype parameters of exoskeleton, the standard orthogonal table L27(313) is selected by Minitab to design 5-factor 3-level orthogonal simulation test, which investigates the interaction between factors. The results of ADAMS simulation show that the influence significant order of the factors and the interaction terms on force F is l2/l1>l2/l1×c1>l2/l1×c2>c2>c1>c1×c2>k2>k1. The installation position l2/l1 of the shock absorber is the main factor affecting the shock absorption performance. The optimal level combination of factors within the test range is l2/l1(1)k1(1)c1(3)k2(1)c2(3). Under the optimal level combination, the exoskeleton achieves a better vibration reduction effect.
-
表 1 人机耦合系统模型相关参数
结构参数 单位 振动工具质量M1 kg 外骨骼夹持装置质量M2 kg 连杆AB的长度l1 mm 连杆BD的长度l2 mm 连杆AH的长度l3 mm 连杆BD与水平角度θ1 rad 连杆AH与水平角度θ2 rad 减振器1、2弹簧刚度k1、k2 N/mm 减振器1、2阻尼系数c1、c2 N·s/mm 腕关节等效刚度k3、k4 N/mm 腕关节等效阻尼系数c3、c4 N·s/mm 激振力的幅值F0 N 手臂初始作用力f N 工具水平、竖直方向位移x、y mm 表 2 人体模型参数
名称 长度/
mm质量/
kg转动惯量/(kg·mm2) Ix Iy Iz 上臂 313 1.707 12 095.8 12 519.8 15 78.5 前臂 237 0.885 3 114.3 3 010.3 783.9 手掌 56 0.442 - - - 表 3 因素水平表
水平 l2/l1 k1 c1 k2 c2 Ⅰ 0.6 2.7 2.15 2.7 2.15 Ⅱ 0.7 2.8 2.30 2.8 2.30 Ⅲ 0.8 2.9 2.45 2.9 2.45 表 4 试验方案设计
试验 l2/l1 k1 c1 k2 c2 1 0.6 2.7 2.15 2.7 2.15 2 0.6 2.7 2.30 2.8 2.30 3 0.6 2.7 2.45 2.9 2.45 4 0.7 2.8 2.15 2.7 2.30 5 0.7 2.8 2.30 2.8 2.45 6 0.7 2.8 2.45 2.9 2.15 7 0.8 2.9 2.15 2.7 2.45 8 0.8 2.9 2.30 2.8 2.15 9 0.8 2.9 2.45 2.9 2.30 10 0.6 2.9 2.15 2.9 2.30 11 0.6 2.9 2.30 2.7 2.45 12 0.6 2.9 2.45 2.8 2.15 13 0.7 2.7 2.15 2.9 2.45 14 0.7 2.7 2.30 2.7 2.15 15 0.7 2.7 2.45 2.8 2.30 16 0.8 2.8 2.15 2.9 2.15 17 0.8 2.8 2.30 2.7 2.30 18 0.8 2.8 2.45 2.8 2.45 19 0.6 2.8 2.15 2.8 2.45 20 0.6 2.8 2.30 2.9 2.15 21 0.6 2.8 2.45 2.7 2.30 22 0.7 2.9 2.15 2.8 2.15 23 0.7 2.9 2.30 2.9 2.30 24 0.7 2.9 2.45 2.7 2.45 25 0.8 2.7 2.15 2.8 2.30 26 0.8 2.7 2.30 2.9 2.45 27 0.8 2.7 2.45 2.7 2.15 表 5 仿真数据处理结果
试验号 Fx/N Fy/N F/N 1 29.928 5 37.362 1 47.871 1 2 26.091 1 38.566 2 46.562 8 3 22.520 0 39.749 7 45.685 7 4 15.823 5 43.587 4 46.370 7 5 16.270 6 45.043 8 47.892 3 6 15.853 4 44.325 2 47.075 0 7 20.750 0 47.569 7 51.898 4 8 18.943 0 46.775 4 50.465 6 9 22.904 4 48.368 4 53.517 4 10 27.992 3 37.974 7 47.176 8 11 24.234 6 39.161 7 46.053 8 12 26.091 8 38.570 8 46.567 0 13 15.842 3 44.321 5 47.067 7 14 15.814 2 43.583 7 46.364 1 15 16.259 0 45.039 9 47.884 7 16 17.461 2 45.966 3 49.171 0 17 20.734 5 47.565 0 51.887 8 18 25.121 5 49.138 1 55.187 4 19 26.091 4 38.568 5 46.564 9 20 27.991 8 37.972 4 47.174 6 21 24.233 6 39.159 3 46.051 2 22 16.299 4 42.856 1 45.851 0 23 15.864 4 44.329 0 47.082 3 24 17.110 7 45.758 2 48.852 7 25 18.912 3 46.766 1 50.445 5 26 22.873 3 48.358 8 53.495 4 27 20.719 0 47.560 2 51.877 2 表 6 极差分析表
指标 水平 l2/l1 k1 c1 k2 c2 Fx Ⅰ 26.1306 20.9955 21.0112 21.0387 21.0114 Ⅱ 16.1264 21.0646 20.9797 21.1200 20.9795 Ⅲ 20.9355 21.1323 21.2015 21.0337 21.2016 R 10.0042 0.1368 0.2218 0.0863 0.2221 FY Ⅰ 38.5650 43.4787 42.7747 43.4786 42.7747 Ⅱ 44.3161 43.4807 43.4840 43.4805 43.4840 Ⅲ 47.5631 43.4849 44.1855 43.4851 44.1856 R 8.9981 0.0062 1.4108 0.0065 1.4109 F Ⅰ 46.6342 48.5838 48.0463 48.5808 48.0463 Ⅱ 47.1601 48.5972 48.5532 48.6024 48.5532 Ⅲ 51.9940 48.6072 49.1887 48.6051 49.1887 R 5.3598 0.0234 1.1424 0.0243 1.1424 表 7 方差分析表
来源 fi 离差
平方和均方 F值 P值 l2/l1 2 157.111 78.555 3 162 565.54 2.00E-10 k1 2 0.002 0.001 2 2.57 1.91E-01 c1 2 5.897 2.948 6 6 101.98 1.07E-07 k2 2 0.003 0.001 6 3.31 1.42E-01 c2 2 5.898 2.948 9 6 102.51 1.07E-07 l2/l1×c1 4 13.064 3.266 1 6 758.94 6.56E-08 l2/l1×c2 4 13.063 3.265 8 6 758.46 6.57E-08 c1×c2 4 0.205 0.051 3 106.25 2.59E-04 误差 4 0.002 0.000 5 合计 26 195.246 -
[1] 陈文华. 手持打磨工具减振辅助装置研究[D]. 济南: 山东大学, 2018CHEN W H. Research on auxiliary device of hand-held grinding tools for reducing vibration[D]. Ji'nan: Shandong University, 2018 (in Chinese) [2] 吴明忠, 杨帆. 手臂系统手传振动的研究现状[J]. 华侨大学学报, 2019, 40(3): 281-290 https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB201903001.htmWU M Z, YANG F. Review of hand-transmitted vibration in hand-arm system[J]. Journal of Huaqiao University, 2019, 40(3): 281-290 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB201903001.htm [3] KIHLBERG S, HAGBERG M. Hand-arm symptoms related to impact and nonimpact hand-held power tools[J]. International Archives of Occupational and Environmental Health, 1997, 69(4): 282-288 doi: 10.1007/s004200050148 [4] MILOSEVIC M, MCCONVILLE K M V. Evaluation of protective gloves and working techniques for reducing hand-arm vibration exposure in the workplace[J]. Journal of Occupational Health, 2012, 54(3): 250-253 doi: 10.1539/joh.11-0176-BR [5] WANG L, ZHANG C Z, ZHANG Q, et al. The study on hand-arm vibration syndrome in China[J]. Industrial Health, 2005, 43(3): 480-483 doi: 10.2486/indhealth.43.480 [6] BUHAUG K, MOEN B E, IRGENS Å. Upper limb disability in Norwegian workers with hand-arm vibration syndrome[J]. Journal of Occupational Medicine and Toxicology, 2014, 9(1): 5 doi: 10.1186/1745-6673-9-5 [7] HEAVER C, GOONETILLEKE K S, FERGUSON H, et al. Hand-arm vibration syndrome: a common occupational hazard in industrialized countries[J]. Journal of Hand Surgery (European Volume), 2011, 36(5): 354-363 doi: 10.1177/1753193410396636 [8] MELHORN J M, WILKINSON L, RIGGS J D. Management of musculoskeletal pain in the workplace[J]. Journal of Occupational and Environmental Medicine, 2001, 43(2): 83-93 doi: 10.1097/00043764-200102000-00003 [9] 范曙远. 飞机装配铆接工艺减振外骨骼关键技术研究[D]. 成都: 西南交通大学, 2019FAN S Y. Research on key technologies of the vibration reduction exoskeleton in riveting process of aircraft assembly[D]. Chengdu: Southwest Jiaotong University, 2019 (in Chinese) [10] XU X S, WELCOME D E, MCDOWELL T W, et al. An investigation on characteristics of the vibration transmitted to wrist and elbow in the operation of impact wrenches[J]. International Journal of Industrial Ergonomics, 2009, 39(1): 174-184 doi: 10.1016/j.ergon.2008.05.006 [11] JING X J, ZHANG L L, FENG X, et al. A novel bio-inspired anti-vibration structure for operating hand-held jackhammers[J]. Mechanical Systems and Signal Processing, 2019, 118: 317-339 [12] WANG Y, JING X J, DAI H H, et al. Subharmonics and ultra-subharmonics of a bio-inspired nonlinear isolation system[J]. International Journal of Mechanical Sciences, 2019, 152: 167-184 [13] HEWITT S, DONG R, MCDOWELL T, et al. The efficacy of anti-vibration gloves[J]. Acoustics Australia, 2016, 44(1): 121-127 doi: 10.1007/s40857-015-0040-5 [14] TEE K P, BURDET E, CHEW C M, et al. A model of force and impedance in human arm movements[J]. Biological Cybernetics, 2004, 90(5): 368-375 doi: 10.1007/s00422-004-0484-4 [15] ZHANG L Q, PORTLAND G H, WANG G Z, et al. Stiffness, viscosity, and upper-limb inertia about the glenohumeral abduction axis[J]. Journal of Orthopaedic Research, 2000, 18(1): 94-100 doi: 10.1002/jor.1100180114 -