留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缩比验证机轴对称矢量喷管设计与验证

孟祥喆 赵志俊 郑浩

孟祥喆,赵志俊,郑浩. 缩比验证机轴对称矢量喷管设计与验证[J]. 机械科学与技术,2021,40(11):1793-1797 doi: 10.13433/j.cnki.1003-8728.20200281
引用本文: 孟祥喆,赵志俊,郑浩. 缩比验证机轴对称矢量喷管设计与验证[J]. 机械科学与技术,2021,40(11):1793-1797 doi: 10.13433/j.cnki.1003-8728.20200281
MENG Xiangzhe, ZHAO Zhijun, ZHENG Hao. Design and Validation of Axisymmetric Thrust Vectoring Nozzle for Scaled Jet UAVs[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1793-1797. doi: 10.13433/j.cnki.1003-8728.20200281
Citation: MENG Xiangzhe, ZHAO Zhijun, ZHENG Hao. Design and Validation of Axisymmetric Thrust Vectoring Nozzle for Scaled Jet UAVs[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1793-1797. doi: 10.13433/j.cnki.1003-8728.20200281

缩比验证机轴对称矢量喷管设计与验证

doi: 10.13433/j.cnki.1003-8728.20200281
详细信息
    作者简介:

    孟祥喆(1991−),硕士,研究方向为航空前沿技术探索验证,619828657@qq.com

  • 中图分类号: V228.7

Design and Validation of Axisymmetric Thrust Vectoring Nozzle for Scaled Jet UAVs

  • 摘要: 在某缩比验证机推力矢量系统研制中,首先采用两套电动舵机驱动的连杆机构的设计方案,实现了矢量喷管的轴对称偏转。通过分析矢量喷管偏转过程中作动机构受力关系和运动关系,得到舵机需提供的最大扭矩与最大铰链力矩的关系。分别采用工程估算和CFD数值模拟两种方法对矢量喷管偏转产生的铰链力矩进行了计算。通过地面试验和飞行试验验证了所研制的轴对称推力矢量系统满足工程应用要求。
  • 图  1  轴对称矢量喷管

    图  2  矢量喷管运动原理示意图

    图  3  铰链力矩产生原理示意图

    图  4  矢量喷管尾喷流模拟建模及网格生成

    图  5  推力计算结果收敛情况

    图  6  流场对称面上的马赫数分布情况

    图  7  延长管与矢量喷管内表面压力分布

    图  8  地面试验发动机状态变化历程

    图  9  缩比验证机试飞测试数据

    表  1  小型涡喷发动机基本参数

    参数及单位数值参数及单位数值
    直径/mm 201 长度/mm 524
    进气流量/(kg·s1) 1.25 油耗/(kg·min–1) 2.4
    平均排气温度/℃ 800 最大排气温度/℃ 875
    下载: 导出CSV

    表  2  动量定理方法铰链力矩计算结果

    η0.80.850.90.95
    M/(N·m)14.316.819.221.6
    下载: 导出CSV
  • [1] 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6): 13-36

    WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 13-36 (in Chinese)
    [2] DEREE K. Summary of fluidic thrust vectoring research at NASA Langley research center[C]//21st AIAA Applied Aerodynamics Conference. Orlando: AIAA, 2003: 3800.
    [3] 瞿丽霞, 李岩, 白香君. 流体推力矢量技术的应用验证研究进展[J]. 航空科学技术, 2020, 31(5): 64-72

    QU L X, LI Y, BAI X J. Application verification research progress on fluid thrust vectoring technology[J]. Aeronautical Science and Technology, 2020, 31(5): 64-72 (in Chinese)
    [4] 曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究[J]. 空气动力学学报, 2019, 37(4): 593-599 doi: 10.7638/kqdlxxb-2017.0202

    CAO Y F, GU Y S, HAN J X. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamica Sinica, 2019, 37(4): 593-599 (in Chinese) doi: 10.7638/kqdlxxb-2017.0202
    [5] JIMENEZ A. Trust vectoring for advanced fighter aircraft, propulsion package development[C]//37th Joint Propulsion Conference and Exhibit. Salt Lake City: AIAA, 2013.
    [6] 何开锋, 刘刚, 毛仲君, 等. 先进战斗机过失速机动模型飞行试验技术[J]. 空气动力学学报, 2020, 38(1): 9-20 doi: 10.7638/kqdlxxb-2019.0088

    HE K F, LIU G, MAO Z J, et al. Model flight test technology for post-stall maneuver of advanced fighter[J]. Acta Aerodynamica Sinica, 2020, 38(1): 9-20 (in Chinese) doi: 10.7638/kqdlxxb-2019.0088
    [7] 王文娟, 马洪忠, 刘长林. 无人机综合飞行/推力矢量控制[J]. 航空学报, 2008, 29(S1): 150-156

    WANG W J, MA H Z, LIU C L. Integrated flight/vectored thrust control for UAV[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(S1): 150-156 (in Chinese)
    [8] BOUGAS L, HORNUNG M. Propulsion system integration and thrust vectoring aspects for scaled jet UAVs[J]. CEAS Aeronautical Journal, 2013, 4(3): 327-343 doi: 10.1007/s13272-013-0076-x
    [9] 程雪梅. 分布式推力矢量控制在超长航时无人机中的应用[J]. 飞行力学, 2011, 29(6): 72-75

    CHENG X M. Study on the distributed trust vector control system of U-HALE UAV[J]. Flight Dynamics, 2011, 29(6): 72-75 (in Chinese)
    [10] SEKAR T C, KUSHARI A, MODY B, et al. Fluidic thrust vectoring using transverse jet injection in a converging nozzle with aft-deck[J]. Experimental Thermal and Fluid Science, 2017, 86: 189-203 doi: 10.1016/j.expthermflusci.2017.04.017
    [11] 李颖杰, 李环宇, 吴林峰, 等. 微型涡喷发动机推进系统的试验建模[J]. 清华大学学报, 2017, 57(1): 107-112

    LI Y J, LI H Y, WU L F, et al. Experimental modeling of micro turbine engine propulsion systems[J]. Journal of Tsinghua University , 2017, 57(1): 107-112 (in Chinese)
    [12] BANAZADEH A, SAGHAFI F, GHOREYSHI M, et al. Multi-directional co-flow fluidic thrust vectoring intended for a small gas turbine[C]//AIAA Infotech@Aerospace 2007 Conference and Exhibit. California: AIAA, 2007: 2940.
    [13] 王莉, 袁茹, 王三民, 等. 温固耦合下轴对称推力矢量喷管驱动机构的运动精度分析[J]. 机械科学与技术, 2008, 27(6): 752-756 doi: 10.3321/j.issn:1003-8728.2008.06.012

    WANG L, YUAN R, WANG S M, et al. Kinematic precision analysis of axial-symmetric vectoring exhaust nozzle with coupling of temperature and structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(6): 752-756 (in Chinese) doi: 10.3321/j.issn:1003-8728.2008.06.012
    [14] 张力, 王立新. 推力矢量飞机控制律设计及过失速机动仿真研究[J]. 飞行力学, 2008, 26(4): 1-3, 7

    ZHANG L, WANG L X. Research on flight control law design of fighter with vectoring thrust and post-stall maneuver simulation[J]. Flight Dynamics, 2008, 26(4): 1-3, 7 (in Chinese)
    [15] LI L, HIROTA M, OUCHI K, et al. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment[J]. Shock Waves, 2017, 27(1): 53-61 doi: 10.1007/s00193-016-0637-0
    [16] WANG Y S, XU J L, HUANG S, et al. Experimental and numerical investigation of an axisymmetric divergent dual throat nozzle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(3): 563-572 doi: 10.1177/0954410019872089
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  44
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回