留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热环境下平纹编织面板蜂窝夹芯板的渐进损伤分析

黄力刚 杨帆 夏志平

黄力刚,杨帆,夏志平. 湿热环境下平纹编织面板蜂窝夹芯板的渐进损伤分析[J]. 机械科学与技术,2021,40(11):1773-1778 doi: 10.13433/j.cnki.1003-8728.20200269
引用本文: 黄力刚,杨帆,夏志平. 湿热环境下平纹编织面板蜂窝夹芯板的渐进损伤分析[J]. 机械科学与技术,2021,40(11):1773-1778 doi: 10.13433/j.cnki.1003-8728.20200269
HUANG Ligang, YANG Fan, XIA Zhiping. Progressive Damage Analysis of Honeycomb Sandwich Panel with Plain Weave Panel in Hygrothermal Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1773-1778. doi: 10.13433/j.cnki.1003-8728.20200269
Citation: HUANG Ligang, YANG Fan, XIA Zhiping. Progressive Damage Analysis of Honeycomb Sandwich Panel with Plain Weave Panel in Hygrothermal Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1773-1778. doi: 10.13433/j.cnki.1003-8728.20200269

湿热环境下平纹编织面板蜂窝夹芯板的渐进损伤分析

doi: 10.13433/j.cnki.1003-8728.20200269
基金项目: 2018年河南省科技发展计划项目(182102210266)
详细信息
    作者简介:

    黄力刚(1980−),副教授,硕士,研究方向为复合材料、机械工程,hgang516@163.com

    通讯作者:

    夏志平,讲师,硕士,研究方向为机械设计与制造,824922601@qq.com

  • 中图分类号: TB332

Progressive Damage Analysis of Honeycomb Sandwich Panel with Plain Weave Panel in Hygrothermal Environment

  • 摘要: 为了研究侧向压缩载荷下单侧面板含穿孔的平纹编织面板蜂窝夹芯板的损伤行为,建立考虑湿热效应的渐进损伤模型。编写UMAT子程序将考虑湿热效应的本构关系、温度变化对材料属性的影响、选用的失效准则和刚度退化模型加入到考虑湿热效应的渐进损伤分析中。将模型在25 ℃、0吸湿量条件下预测的位移-载荷曲线及失效形式与实验进行对照,以验证建立模型的正确性。进一步在5个温度和5个湿度下研究湿热效应对受侧向压缩载荷的蜂窝夹芯板承载强度的影响。结果表明,建立的模型可有效预测损伤的扩展过程和湿热环境对蜂窝板性能的影响,随着温度和湿度的增加,蜂窝板的承载强度逐渐下降。
  • 图  1  平纹编织面板蜂窝夹芯板的几何模型

    图  2  网格加密的有限元模型

    图  3  位移-载荷曲线

    图  4  经向纤维压缩失效的扩展过程与实验[22]对照

    图  5  湿热对蜂窝板侧压强度的影响

    表  1  刚度退化模式[19]

    损伤类型材料参数退化方式
    经向纤维
    压缩失效
    $E_{{{11}}}^D = 0.{{01}}{E_{{{11}}}},G_{12}^D = 0.{{1}}{G_{12}},$
    $G_{13}^D = 0.{{01}}{G_{{{1}}3}},{\upsilon _{12}} = 0,{\upsilon _{13}} = 0 $
    纬向纤维
    压缩失效
    $ {E}_{{22}}^{D}=0.{01}{E}_{22},{G}_{12}^{D}=0.{1}{G}_{12},$
    ${G}_{23}^{D}=0.{01}{G}_{23},{\upsilon }_{{12}}{=0},{\upsilon }_{{23}}=0 $
    纤维-基体经向
    剪切失效
    $G_{{{12}}}^D = 0.{{1}}{G_{{{12}}}},{\upsilon _{{{12}}}} = 0$
    纤维-基体纬向
    剪切失效
    $G_{{{12}}}^D = 0.{{1}}{G_{{{12}}}},{\upsilon _{{{12}}}} = 0$
    蜂窝芯失效 $E_{{{11}}}^D = 0.4{E_{11}},E_{22}^D = 0.4{E_{22}},$
    $E_{33}^D = 0.45{E_{33}},G_{ij}^D = 0.4{G_{ij}}\left( {i \ne j} \right) $
    下载: 导出CSV

    表  2  胶层材料参数[21]

    参数数值参数数值
    ${E_n}$/MPa3000${G_{IIIc}}$/mJ·mm−20.665
    ${E_s}$/MPa1150$\sigma _n^0$/MPa10
    ${E_t}$/MPa1150$\sigma _s^0$/MPa15
    ${G_{Ic}}$/mJ·mm−20.268$\sigma _t^0$/MPa15
    ${G_{IIc}}$/mJ·mm−20.665
    下载: 导出CSV

    表  3  单层板等效材料参数[21]

    参数数值参数数值
    ${E_{11}}$/GPa21${X_t}$/MPa322
    ${E_{{\rm{22}}}}$/GPa23${X_c}$/MPa364
    ${E_{{\rm{33}}}}$/GPa18${Y_t}$/MPa322
    ${\nu _{{\rm{12}}}}$/GPa0.2${Y_c}$/MPa364
    ${\nu _{{\rm{13}}}}$/GPa0.15${Z_t}$/MPa103
    ${\nu _{{\rm{23}}}}$/GPa0.15${Z_c}$/MPa500
    ${G_{12}}$/GPa2.65${S_{12}}$/MPa118
    ${G_{13}}$/GPa1.7${S_{13}}$/MPa24
    ${G_{23}}$/GPa1.7${S_{23}}$/MPa24
    下载: 导出CSV

    表  4  蜂窝芯等效材料参数[21]

    参数数值参数数值
    ${E_{11}}$/MPa0.28${\nu _{{\rm{12}}}}$/MPa0.99
    ${E_{{\rm{22}}}}$/MPa0.28${\nu _{{\rm{13}}}}$/MPa0
    ${E_{{\rm{33}}}}$/MPa298${\nu _{{\rm{23}}}}$/MPa0
    ${G_{12}}$/MPa0.04${X_t}$/MPa5.71
    ${G_{1{\rm{3}}}}$/MPa82.21${S_{cx{\textit{z}}}}$/MPa82.21
    ${G_{{\rm{23}}}}$/MPa43.28${S_{cy{\textit{z}}}}$/MPa43.28
    下载: 导出CSV

    表  5  不同湿热条件下的失效载荷 kN

    湿度/%温度/℃
    255075100125
    019.9219.5619.2018.8418.48
    0.2519.3819.0218.6618.3017.94
    0.5018.8418.4818.1217.7617.40
    0.7518.3017.9417.5817.2216.86
    1.0017.7617.4017.0416.6816.32
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12 doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] ZHANG J, ROWLAND J. Damage modeling of carbon-fiber reinforced polymer composite pin-joints at extreme temperatures[J]. Composite Structures, 2012, 94(8): 2314-2325 doi: 10.1016/j.compstruct.2012.03.011
    [3] GOSWAMI S. A finite element investigation on progressive failure analysis of composite bolted joints under thermal environment[J]. Journal of Reinforced Plastics and Composites, 2005, 24(2): 161-171 doi: 10.1177/0731684405042958
    [4] WALKER S P. Thermal effects on the pin-bearing behavior of IM7/PETI5 composite joints[J]. Journal of Composite Materials, 2002, 36(23): 2623-2651 doi: 10.1177/002199802761675557
    [5] SONG M H, KWEON J H, KIM S K, et al. An experimental study on the failure of carbon/epoxy single lap riveted joints after thermal exposure[J]. Composite Structures, 2008, 86(1-3): 125-134 doi: 10.1016/j.compstruct.2008.03.029
    [6] ZHANG J Y, QI D X, ZHOU L W, et al. A progressive failure analysis model for composite structures in hygrothermal environments[J]. Composite Structures, 2015, 133: 331-342 doi: 10.1016/j.compstruct.2015.07.063
    [7] 余芬, 刘武帅, 王伟韬, 等. 热力耦合作用下复合材料搭接结构强度研究[J]. 机械科学与技术, 2019, 38(5): 796-802

    YU F, LIU W S, WANG W T, et al. Study on strength of composite lap structures under thermal mechanical coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 796-802 (in Chinese)
    [8] JIA Z A, LI T T, CHIANG F P, et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2018, 154: 53-63 doi: 10.1016/j.compscitech.2017.11.015
    [9] 王玉鑫, 张刚, 卢翔. 湿热环境对挖补修理后复合材料层合板振动特性的影响[J]. 应用力学学报, 2020, 37(1): 249-257

    WANG Y X, ZHANG G, LU X. Effects of vibration characteristics of step repaired laminated composites under hygrothermal environment[J]. Chinese Journal of Applied Mechanics, 2020, 37(1): 249-257 (in Chinese)
    [10] 赵天, 杨智春, 田玮, 等. 湿热环境下复合材料层合板振动与声辐射特性分析[J]. 航空学报, 2017, 38(10): 139-149

    ZHAO T, YANG Z C, TIAN W, et al. Vibration and acoustic radiation characteristics analysis of composite laminated plate in hygrothermal environments[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 139-149 (in Chinese)
    [11] 曹景斌, 王松, 章强. 树脂基复合材料湿热压缩性能研究[J]. 航空科学技术, 2020, 31(3): 47-52

    CAO J B, WANG S, ZHANG Q. Research on resin composite hydrothermal compressive properties[J]. Aeronautical Science and Technology, 2020, 31(3): 47-52 (in Chinese)
    [12] 胡建平, 蔡吉喆, 肇研, 等. 湿热环境对蜂窝夹层复合材料性能的影响[J]. 材料工程, 2010(11): 43-47 doi: 10.3969/j.issn.1001-4381.2010.11.011

    HU J P, CAI J Z, ZHAO Y, et al. Effects of hygrothermal environment on properties of nomex sandwich composite[J]. Journal of Materials Engineering, 2010(11): 43-47 (in Chinese) doi: 10.3969/j.issn.1001-4381.2010.11.011
    [13] BENKHEDDA A, TOUNSI A, BEDIA E A A. Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates[J]. Composite Structures, 2008, 82(4): 629-635 doi: 10.1016/j.compstruct.2007.04.013
    [14] RAIMONDO L, IANNUCCI L, ROBINSON P, et al. A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage[J]. Composites Science and Technology, 2012, 72(5): 624-632 doi: 10.1016/j.compscitech.2012.01.007
    [15] DEUSCHLE H M, PUCK A. Application of the Puck failure theory for fibre-reinforced composites under three-dimensional stress: comparison with experimental results[J]. Journal of Composite Materials, 2013, 47(6-7): 827-846 doi: 10.1177/0021998312462158
    [16] 林国伟, 陈普会. 胶接修补复合材料层合板失效分析的PDA-CZM方法[J]. 航空学报, 2009, 30(10): 1877-1882 doi: 10.3321/j.issn:1000-6893.2009.10.014

    LIN G W, CHEN P H. PDA-CZM method for failure analysis of bonded repair of composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1877-1882 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.10.014
    [17] 杨莹. 含孔织物复合材料的强度预测与优化方法研究[D]. 南京: 南京航空航天大学, 2009.

    YANG Y. Strength prediction and optimization of woven composite laminates with hole[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese).
    [18] BESANT T, DAVIES G A O, HITCHINGS D. Finite element modelling of low velocity impact of composite sandwich panels[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(9): 1189-1196 doi: 10.1016/S1359-835X(01)00084-7
    [19] 周春苹, 刘武帅, 王轩, 等. 含表面划伤平纹编织面板蜂窝夹芯结构侧向压缩渐进失效分析[J]. 玻璃钢/复合材料, 2019(7): 5-10

    ZHOU C P, LIU W S, WANG X, et al. Study on edgewise compression performance of honeycomb sandwich structure with scratch damage[J]. Fiber Reinforced Plastics/Composites, 2019(7): 5-10 (in Chinese)
    [20] 庄茁, 由小川, 廖剑晖, 等. 基于ABAQUS的有限元分析和应用[M]. 北京: 清华大学出版社, 2009.

    ZHUANG Z, YOU X C, LIAO J H, et al. Finite element analysis and application based on ABAQUS[M]. Beijing: Tsinghua University Press, 2009 (in Chinese)
    [21] 王轩, 刘武帅, 余芬, 等. 穿孔对平纹编织面板蜂窝夹芯结构侧向压缩性能的影响[J]. 中国机械工程, 2019, 30(17): 2076-2083 doi: 10.3969/j.issn.1004-132X.2019.17.009

    WANG X, LIU W S, YU F, et al. Effects of perforation on edgewise compression performances of honeycomb sandwich structures with plain woven panels[J]. China Mechanical Engineering, 2019, 30(17): 2076-2083 (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.17.009
    [22] 周睿, 关志东, 李星, 等. 复合材料开孔层板压缩渐进损伤分析[J]. 北京航空航天大学学报, 2015, 41(6): 1066-1072

    ZHOU R, GUAN Z D, LI X, et al. Progressive damage analysis of open-hole composite laminates under compression load[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1066-1072 (in Chinese)
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  39
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-29
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回