留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非正交航空弧齿锥齿轮磨削精度自适应加工参数驱动控制方法

孙甲尧 郭紫贵 王志伟 丁撼 李秀兰 陈立

孙甲尧,郭紫贵,王志伟, 等. 非正交航空弧齿锥齿轮磨削精度自适应加工参数驱动控制方法[J]. 机械科学与技术,2021,40(11):1779-1786 doi: 10.13433/j.cnki.1003-8728.20200265
引用本文: 孙甲尧,郭紫贵,王志伟, 等. 非正交航空弧齿锥齿轮磨削精度自适应加工参数驱动控制方法[J]. 机械科学与技术,2021,40(11):1779-1786 doi: 10.13433/j.cnki.1003-8728.20200265
SUN Jiayao, GUO Zigui, WANG Zhiwei, DING Han, LI Xiulan, CHEN Li. Adaptive Machine Settings Driven Grinding Accuracy Control Method for Non-orthogonal Aerospace Spiral Bevel Gears[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1779-1786. doi: 10.13433/j.cnki.1003-8728.20200265
Citation: SUN Jiayao, GUO Zigui, WANG Zhiwei, DING Han, LI Xiulan, CHEN Li. Adaptive Machine Settings Driven Grinding Accuracy Control Method for Non-orthogonal Aerospace Spiral Bevel Gears[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1779-1786. doi: 10.13433/j.cnki.1003-8728.20200265

非正交航空弧齿锥齿轮磨削精度自适应加工参数驱动控制方法

doi: 10.13433/j.cnki.1003-8728.20200265
基金项目: 湖南省自然科学基金项目(2021JJ60080,2019JJ70035)与湖南省教育厅科学研究项目(18C1779)
详细信息
    作者简介:

    孙甲尧(1981−),副教授,研究方向为齿轮加工工艺,4205220@qq.com

    通讯作者:

    王志伟,硕士,wangzw89@csu.edu.cn

  • 中图分类号: TH122; V252.2

Adaptive Machine Settings Driven Grinding Accuracy Control Method for Non-orthogonal Aerospace Spiral Bevel Gears

  • 摘要: 非正交航空弧齿锥齿轮由于其高速重载服役特性,齿面磨削精度要求高,很难实现实际齿面与理论齿面的匹配。为了满足高效率高精度要求,本文提出了一种齿面精度自适应加工参数驱动控制方法。首先,基于先进的全工序法磨削仿真,进行加工参数驱动的齿面精确数学建模。然后,以磨削精度为控制目标,建立齿面误差测量、齿面设计,齿面误差反调集成的加工精度自适应控制模型。最后,通过齿面误差敏感性分析策略和改进Levenberg-Marquardt算法,实现预设目标齿面的自适应逼近,求解最终精确机床加工参数。本文提供的算例证明了该方法有效性。
  • 图  1  非正交螺旋锥齿轮的双螺旋加工运动学仿真

    图  2  齿面加工精度测量

    图  3  加工精度控制模型

    图  4  非正交航空弧齿锥齿轮装配图

    图  5  小轮累计误差及初始误差统计图

    图  6  大轮凸面累计误差及初始误差统计

    图  7  小轮凹面残差图

    图  8  大轮凸面残差图

    表  1  31/38齿坯参数

    参数小轮大轮
    齿数3138
    面宽/mm32.0032.00
    压力角/(°)2020
    轴交角/(°)5252
    齿顶/mm5.903.44
    齿根高/mm4.656.3
    外锥距/mm208.81208.81
    节锥角/(°)23.1666728.833333
    面锥角/(°)24.2666729.600000
    根锥角/(°)22.427.73333
    旋向RHLH
    下载: 导出CSV

    表  2  31/38加工参数

    参数名小轮大轮
    刀盘直径D/mm305.0400304.80
    刀顶距Pw/mm2.18191.9050
    外侧压力角AgO/mm22.2022.50
    内侧压力角AgI/mm22.6022.50
    外侧圆角半径RwI/mm0.98001.0400
    内侧圆角半径RwO/mm1.00001.0400
    外侧修形半径ρO/mm260.0000304.80
    内侧修形半径ρI/mm400.00001.9050
    径向刀位Sr/mm163.3098163.52611
    角向刀位q/(°)50.496849.8142
    刀倾角σ/(°)3.440.5985
    刀转角ξ/(°)2.596914.88
    垂直轮位EM/mm0.125580.0000
    安装角γm/(°)20.1323.73
    水平轮位XB/mm0.438730.00000
    床位XD/mm−3.1264−3.86914
    滚比m2.52589992.075437
    螺旋修正系数Heli6.684820.00000
    下载: 导出CSV

    表  3  非正交航空弧齿锥齿轮反调结果

    参数小轮大轮
    径向刀161.3222161.653
    角向刀位q/(°)50.5020149.8051
    刀倾角σ/(°)3.4406140.6173
    刀转角ξ/(°)2.59695914.88
    垂直轮位EM/mm0.054880.0512
    安装角γm/(°)20.101623.754
    水平轮位XB/mm0.438954−1.3304
    床位XD/mm−3.1439−7.07774
    滚比m2.5126482.080307
    螺旋修正系数Heli6.6847940.00000
    下载: 导出CSV
  • [1] 曾韬. 螺旋锥齿轮设计与加工[M]. 哈尔滨: 哈尔滨工业大学出版社, 1989

    ZENG T. Design and machining of spiral bevel gear[M]. Harbin: Harbin Institute of Technology Press, 1989 (in Chinese)
    [2] 胡德金. 影响大型高硬球面磨削精度的因素及控制方法[J]. 上海交通大学学报, 2016, 50(7): 987-993

    HU D J. Some factors influencing grinding accuracy of large sphere surface and control methods[J]. Journal of Shanghai Jiaotong University, 2016, 50(7): 987-993 (in Chinese)
    [3] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402 doi: 10.3785/j.issn.1006-754X.2019.04.004

    LIU C Q, WANG W H. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402 (in Chinese) doi: 10.3785/j.issn.1006-754X.2019.04.004
    [4] 罗筱英, 唐进元. 结构参数对砂轮主轴系统动态性能的影响[J]. 机械工程学报, 2007, 43(3): 128-134 doi: 10.3321/j.issn:0577-6686.2007.03.022

    LUO X Y, TANG J Y. Effect of structure parameters on dynamic properties of spindle system[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3): 128-134 (in Chinese) doi: 10.3321/j.issn:0577-6686.2007.03.022
    [5] LITVIN F L, TSUNG W J, COY J J, et al. Generated spiral bevel gears: optimal machine-tool settings and tooth contact analysis[C]//Proceedings of 1985 SAE International Off-Highway and Powerplant Congress and Exposition. SAE International, 1985: 877-884
    [6] 唐进元, 卢延峰, 周超. 有误差的螺旋锥齿轮传动接触分析[J]. 机械工程学报, 2008, 44(7): 16-23 doi: 10.3321/j.issn:0577-6686.2008.07.003

    TANG J Y, LU Y F, ZHOU C. Error tooth contact analysis of spiral bevel gears transmission[J]. Chinese Journal of Mechanical Engineering, 2008, 44(7): 16-23 (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.07.003
    [7] 唐进元, 卢延峰, 周超. 调整参数误差对齿面接触质量的影响[J]. 航空动力学报, 2008, 23(9): 1718-1723

    TANG J Y, LU Y F, ZHOU C. Effect of machine tool adjustment parameter errors on spiral bevel gears tooth contact quality[J]. Journal of Aerospace Power, 2008, 23(9): 1718-1723 (in Chinese)
    [8] GABICCINI M, BRACCI A, GUIGGIANI M. Robust optimization of the loaded contact pattern in hypoid gears with uncertain misalignments[J]. Journal of Mechanical Design, 2009, 132(4): 041010
    [9] 李丽霞, 李培军, 刘新状. 机床调整误差对弧齿锥齿轮大轮齿面形状影响规律的研究[J]. 机械传动, 2006, 30(4): 13-15 doi: 10.3969/j.issn.1004-2539.2006.04.005

    LI L X, LI P J, LIU X Z. Research on the influence of the gear tooth surface shape of spiral bevel gear by adjustment error of machine tool[J]. Journal of Mechanical Transmission, 2006, 30(4): 13-15 (in Chinese) doi: 10.3969/j.issn.1004-2539.2006.04.005
    [10] 唐进元, 聂金安, 王智泉. 螺旋锥齿轮HFT法加工的反调修正方法[J]. 中南大学学报, 2012, 43(6): 2142-2149

    TANG J Y, NIE J A, WANG Z Q. Reverse correction of spiral bevel gear HFT method[J]. Journal of Central South University, 2012, 43(6): 2142-2149 (in Chinese)
    [11] 唐进元, 邢彬. 基于三坐标测量机的螺旋锥齿轮加工参数反调修正[J]. 北京工业大学学报, 2010, 36(11): 1451-1456

    TANG J Y, XING B. Machine-settings correction of spiral bevel gear based on coordinate measuring machine[J]. Journal of Beijing University of Technology, 2010, 36(11): 1451-1456 (in Chinese)
    [12] GLEASON. Generated hypoid gears duplex helical method[M]. Rochester: The Gleason Works, 1971: 56-70
    [13] LITVIN F L, KUAN C, WANG J C, et al. Minimization of deviations of gear real tooth surfaces determined by coordinate measurements[J]. Journal of Mechanical Design, 1993, 115(12): 995-1001
    [14] LIN C Y, TSAY C B, FONG Z H. Computer-aided manufacturing of spiral bevel and hypoid gears with minimum surface-deviation[J]. Mechanism and Machine Theory, 1998, 33(6): 785-803 doi: 10.1016/S0094-114X(97)00101-8
    [15] ARTONI A, GABICCINI M, GUIGGIANI M. Nonlinear identification of machine settings for flank form modifications in hypoid gears[J]. Journal of Mechanical Design, 2008, 130(11): 112602 doi: 10.1115/1.2976454
    [16] DING H, WAN G X, ZHOU Y S, et al. Nonlinearity analysis based algorithm for indentifying machine settings in the tooth flank topography correction for hypoid gears[J]. Mechanism and Machine Theory, 2017, 113: 1-21 doi: 10.1016/j.mechmachtheory.2017.02.007
    [17] DING H, TANG J Y, ZHONG J. Accurate nonlinear modeling and computing of grinding machine settings modification considering spatial geometric errors for hypoid gears[J]. Mechanism and Machine Theory, 2016, 99: 155-175 doi: 10.1016/j.mechmachtheory.2016.01.008
    [18] 樊奇, 让·德福. 格里森专家制造系统(GEMS)开创弧齿锥齿轮及双曲面齿轮数字化制造新纪元[J]. 世界制造技术与装备市场, 2005(4): 87-93 doi: 10.3969/j.issn.1015-4809.2005.04.030

    FAN Q, DAFOR R. Gleason expert manufacturing system (GEMS) opens a new era for digitized manufacturing of spiral bevel and hypoid gears[J]. World Manufacturing Engineering & Market, 2005(4): 87-93 (in Chinese) doi: 10.3969/j.issn.1015-4809.2005.04.030
    [19] FAN Q, DAFOE R S, SWANGER J W. Higher-order tooth flank form error correction for face-milled spiral bevel and hypoid gears[J]. Journal of Mechanical Design, 2008, 130(7): 072601 doi: 10.1115/1.2898878
    [20] DING H, TANG J Y, SHAO W, et al. Optimal modification of tooth flank form error considering measurement and compensation of cutter geometric errors for spiral bevel and hypoid gears[J]. Mechanism and Machine Theory, 2017, 118: 14-31 doi: 10.1016/j.mechmachtheory.2017.07.020
    [21] ARTONI A, BRACCI A, GABICCINI M, et al. Optimization of the loaded contact pattern in hypoid gears by automatic topography modification[J]. Journal of Mechanical Design, 2010, 131(1): 011008
    [22] ARTONI A, KOLIVAND A, KAHRAMAN M. An ease-off based optimization of the loaded transmission error of hypoid gears[J]. Journal of Mechanical Design, 2010, 132(1): 011010 doi: 10.1115/1.4000645
    [23] ARTONI A, GABICCINI M, GUIGGIANI M, et al. Multi-objective ease-off optimization of hypoid gears for their efficiency, noise, and durability performances[J]. Journal of Mechanical Design, 2011, 133(12): 121007 doi: 10.1115/1.4005234
    [24] 陈书涵. 螺旋锥齿轮磨削误差产生机制及修正技术研究[D]. 长沙: 中南大学, 2009

    CHEN S H. Research on generation mechanism and correction technique for spiral bevel gear's grinding errors[D]. Changsha: Central South University, 2009 (in Chinese)
    [25] 唐进元, 李友元, 周超, 等. 螺旋锥齿轮数控磨齿机床空间误差与机机床调整参数的关系[J]. 机械工程学报, 2009, 45(4): 148-154 doi: 10.3901/JME.2009.04.148

    TANG J Y, LI Y Y, ZHOU C, et al. Relation between CNC bevel gear generator spatial errors and machine setting errors[J]. Journal of Mechanical Engineering, 2009, 45(4): 148-154 (in Chinese) doi: 10.3901/JME.2009.04.148
    [26] SIMON V V. Machine-tool settings to reduce the sensitivity of spiral bevel gears to tooth errors and misalignments[J]. Journal of Mechanical Design, 2008, 130(8): 082603 doi: 10.1115/1.2936903
    [27] DING H, TANG J Y, ZHONG J, et al. A hybrid modification approach of machine-tool setting considering high tooth contact performance in spiral bevel and hypoid gears[J]. Journal of Manufacturing Systems, 2016, 41: 228-238 doi: 10.1016/j.jmsy.2016.09.003
    [28] DING H, WAN Z G, ZHOU Y S, et al. A data-driven programming of the human-computer interactions for modeling a collaborative manufacturing system of hypoid gears by considering both geometric and physical performances[J]. Robotics and Computer-Integrated Manufacturing, 2018, 51: 121-138 doi: 10.1016/j.rcim.2017.10.003
    [29] DENG J, LI J B, DENG X Z. A network-based manufacturing model for spiral bevel gears[J]. Journal of Intelligent Manufacturing, 2018, 29(2): 353-367 doi: 10.1007/s10845-015-1111-z
    [30] 范金燕, 袁亚湘. 非线性方程组数值方法[M]. 北京: 科学出版社, 2018

    FAN J Y, YUAN Y X. Numerical methods for nonlinear equations[M]. Beijing: Science Press, 2018 (in Chinese)
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  46
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回