留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢丝绳隔振器系统随机响应统计线性化分析

王红霞 陈大顶 戢玉莹

王红霞,陈大顶,戢玉莹. 钢丝绳隔振器系统随机响应统计线性化分析[J]. 机械科学与技术,2021,40(11):1703-1709 doi: 10.13433/j.cnki.1003-8728.20200264
引用本文: 王红霞,陈大顶,戢玉莹. 钢丝绳隔振器系统随机响应统计线性化分析[J]. 机械科学与技术,2021,40(11):1703-1709 doi: 10.13433/j.cnki.1003-8728.20200264
WANG Hongxia, CHEN Dading, JI Yuying. Statistical Linearization Analysis of Random Response of Wire-cable Isolator System[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1703-1709. doi: 10.13433/j.cnki.1003-8728.20200264
Citation: WANG Hongxia, CHEN Dading, JI Yuying. Statistical Linearization Analysis of Random Response of Wire-cable Isolator System[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1703-1709. doi: 10.13433/j.cnki.1003-8728.20200264

钢丝绳隔振器系统随机响应统计线性化分析

doi: 10.13433/j.cnki.1003-8728.20200264
基金项目: 湖北省自然科学基金项目(2017CFB741)与汽车动力传动与电子控制湖北省重点实验室(湖北汽车工业学院)资助项目(ZDK1201802)
详细信息
    作者简介:

    王红霞(1977−),副教授,研究方向为机械振动分析及控制理论和应用,8784145@163.com

  • 中图分类号: TH112; TH113

Statistical Linearization Analysis of Random Response of Wire-cable Isolator System

  • 摘要: 针对钢丝绳隔振器非线性系统随机响应运动方程求解困难、计算效率低的问题,提出钢丝绳隔振器-质量块非线性系统随机响应特性的统计线性化分析方法,并通过等效前后数值仿真进行了有效性验证,同时计算位移传递率评估钢丝绳隔振器的隔振效果。结果表明,统计线性化分析方法和数值仿真所得系统的随机响应曲线一致,验证了统计线性化分析钢丝绳隔振器系统随机响应特性的有效性和准确性,且分析速度远远高于数值仿真,显著提高了非线性隔振系统的设计效率。
  • 图  1  钢丝绳隔振器-质量块非线性隔振系统示意图

    图  2  等效前后钢丝绳隔振器系统位移响应曲线

    图  3  等效前后钢丝绳隔振器系统速度响应曲线

    图  4  等效前后钢丝绳隔振器系统迟滞力响应曲线

    图  5  白噪声激励下位移传递率

    图  6  有色噪声下激励位移传递率

    表  1  平稳高斯白噪声响应计算结果

    等效参数k11=33.2633 N/mm
    k12=73.5273 N/mm
    c21=1.7679 N/(mm/s)
    k22=−1.7783 N/mm
    统计响应量 E(x2)=0.0024
    E(xZ)=0.0038
    E(x2)=0.0024
    ${\rm{E}}({\dot x^2}) = 0.360\;0$
    E(Z2)=0.0068
    下载: 导出CSV

    表  2  模型参数识别结果

    模型参数N=3,M=2
    ke0 −20.7042
    ke1 33.2563
    ke2 1.9752
    ke3 0.1254
    kz0 73.5276
    kz1 6.3485
    kz2 −0.1424
    $\rho $ 1.6471
    $\sigma $ 2.4562
    n 0.8457
    下载: 导出CSV

    表  3  统计线性化后各响应量拟合优度指标

    随机激励信号响应量RNL
    白噪声位移x0.9613
    速度v0.9738
    迟滞力Z0.9684
    有色噪声位移x0.9653
    速度v0.9697
    迟滞力Z0.9708
    下载: 导出CSV

    表  4  数值仿真与统计线性化分析时间

    白噪声强度P/dBW分析时间/s
    数值仿真统计线性化
    0.24.650.846
    0.44.430.846
    0.66.870.846
    0.87.790.846
    1.03.360.846
    下载: 导出CSV
  • [1] 郭栋. 新型钢丝绳减振器减振性能的试验研究[D]. 太原: 中北大学, 2012.

    GUO D. Experiment research on damping characteristic of new style wire-rope absorber[D]. Taiyuan: North University of China, 2012 (in Chinese).
    [2] 庄表中, 陈乃立, 秦瑞芬. 非线性减振器的鉴别及其受白噪声激励时的响应分析[J]. 振动与冲击, 1984, 3(2): 50-57

    ZHUANG B Z, CHEN N L, QIN R F. Differentiation of the nonlinearity of dashpots and analysis of its responce to whits noise excitation[J]. Journal of Vibration and Shock, 1984, 3(2): 50-57 (in Chinese)
    [3] 李守昆. 基于钢丝绳隔振器的非线性隔振系统动力学特性研究[D]. 济南: 山东大学, 2012.

    LI S K. Dynamic characteristics of nonlinear vibration isolator system based on wire rope isolator[D]. Ji' nan: Shandong University, 2012 (in Chinese).
    [4] 田静, 王恕浩. 基于磁流变减摆器的修正Bouc-Wen模型参数辨识[J]. 组合机床与自动化加工技术, 2019(5): 51-54, 62

    TIAN J, WANG S H. Parameter identification of modified Bouc-Wen model based on magnetorheological shimmy damper[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(5): 51-54, 62 (in Chinese)
    [5] 丁传俊, 刘宁, 张相炎. 多股簧非线性响应模型及其影响研究[J]. 振动与冲击, 2019, 38(7): 139-145

    DING C J, LIU N, ZHANG X Y. Nonlinear response models of a multi-strand wire helical spring and its influences[J]. Journal of Vibration and Shock, 2019, 38(7): 139-145 (in Chinese)
    [6] 丁传俊, 张相炎, 刘宁. 基于改进反向差分进化算法的多股簧响应模型参数辨识[J]. 振动与冲击, 2019, 38(1): 187-194

    DING C J, ZHANG X Y, LIU N. Parametric identification for nonlinear response model of a stranded wire helical spring based on improved reverse learning difference evolution Algorithm[J]. Journal of Vibration and Shock, 2019, 38(1): 187-194 (in Chinese)
    [7] 程成. 周期载荷下多股簧的动力学模型及响应特性研究[D]. 重庆: 重庆大学, 2014: 30-44.

    CHENG C. Study of modeling and response characteristics of stranded wire helical springs under periodic loading[D]. Chongqing: Chongqing University, 2014: 30-44 (in Chinese).
    [8] 王红霞, 龚宪生, 潘飞, 等. O型钢丝绳隔振器动态迟滞模型参数识别方法研究[J]. 振动与冲击, 2015, 34(20): 155-160

    WANG H X, GONG X S, PAN F, et al. Parametric identification method for identifying dynamic hysteretic model parameters of O-type wire-cable vibration isolator[J]. Journal of Vibration and Shock, 2015, 34(20): 155-160 (in Chinese)
    [9] 丁传俊, 张相炎, 刘宁. 基于自适应无迹卡尔曼滤波算法的多股螺旋弹簧动态响应模型参数辨识和分析[J]. 兵工学报, 2018, 39(1): 28-37 doi: 10.3969/j.issn.1000-1093.2018.01.003

    DING C J, ZHANG X Y, LIU N. Adaptive unscented Kalman filter algorithm for identifying and analyzing the dynamic response model parameters of stranded wire helical springs[J]. Acta Armamentarii, 2018, 39(1): 28-37 (in Chinese) doi: 10.3969/j.issn.1000-1093.2018.01.003
    [10] 戴美想. 迟滞阻尼振动系统随机响应研究[D]. 南京: 南京航空航天大学, 2006.

    DAI M X. Research on the response of hysteretic systems under random excitation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese).
    [11] CANOR T, BLAISE N, DENOËL V. An asymptotic expansion-based method for a spectral approach in equivalent statistical linearization[J]. Probabilistic Engineering Mechanics, 2014, 38: 1-12 doi: 10.1016/j.probengmech.2014.08.003
    [12] GIARALIS A, SPANOS P D. Derivation of equivalent linear properties of Bouc-wen hysteretic systems for seismic response spectrum analysis via statistical linearization[C]//Proceedings of the 10th HSTAM International Congress on Mechanics. Chania, Greece, 2013: 9.
    [13] 曹智谋. 基于负刚度的惯性质量阻尼装置力学模型分析与应用[D]. 天津: 天津大学, 2016.

    CAO Z M. Mechanical model of gyro-mass viscous damping devices considering negative stiffness effect: analysis and application[D]. Tianjin: Tianjin University, 2016 (in Chinese).
    [14] 王红霞, 龚宪生, 潘飞, 等. O型钢丝绳隔振器的三向动态特性[J]. 振动、测试与诊断, 2016, 36(6): 1191-1195

    WANG H X, GONG X S, PAN F, et al. Research on the dynamic behavior of O type wire-cable vibration isolator in three modes[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(6): 1191-1195 (in Chinese)
    [15] 胡津亚, 曾三元. 现代随机振动[M]. 北京: 中国铁道出版社, 1989: 260.

    HU J Y, ZENG S Y. Modern random vibration[M]. Beijing: China Railway Publishing House, 1989: 260 (in Chinese).
    [16] LIN Y K. Probabilistic theory of structural dynamics[M]. New York: McGraw-Hill, 1967.
    [17] 全国机械振动与冲击标准化技术委员会. GB/T 7031-2005 机械振动道路路面谱测量数据报告[S]. 北京: 中国标准出版社, 2006.

    National Technical Committee on Standardization of Mechanical Vibration and Impact. GB/T 7031-2005 Mechanical vibration-Road surface profiles-Reporting of measured data[S]. Beijing: China Standard Press, 2006 (in Chinese).
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  49
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回