留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑应变-温度耦合与高温动态结晶的钛合金本构模型研究

张铭 刘献礼 岳彩旭 Steven Y.LIANG 李恒帅 刘智博

张铭,刘献礼,岳彩旭, 等. 考虑应变-温度耦合与高温动态结晶的钛合金本构模型研究[J]. 机械科学与技术,2021,40(11):1641-1648 doi: 10.13433/j.cnki.1003-8728.20200263
引用本文: 张铭,刘献礼,岳彩旭, 等. 考虑应变-温度耦合与高温动态结晶的钛合金本构模型研究[J]. 机械科学与技术,2021,40(11):1641-1648 doi: 10.13433/j.cnki.1003-8728.20200263
ZHANG Ming, LIU Xianli, YUE Caixu, Steven Y. LIANG, LI Hengshuai, LIU Zhibo. Study on Constitutive Model for Titanium Alloy by Coupling Strain-temperature and Dynamic Crystallization[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1641-1648. doi: 10.13433/j.cnki.1003-8728.20200263
Citation: ZHANG Ming, LIU Xianli, YUE Caixu, Steven Y. LIANG, LI Hengshuai, LIU Zhibo. Study on Constitutive Model for Titanium Alloy by Coupling Strain-temperature and Dynamic Crystallization[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1641-1648. doi: 10.13433/j.cnki.1003-8728.20200263

考虑应变-温度耦合与高温动态结晶的钛合金本构模型研究

doi: 10.13433/j.cnki.1003-8728.20200263
基金项目: 黑龙江省自然科学基金优秀青年项目(YQ2019E029)
详细信息
    作者简介:

    张铭(1995−),硕士研究生,研究方向为材料本构模型的二次开发,钛合金铣削有限元仿真,1540165525@qq.com

    通讯作者:

    刘献礼,教授,博士生导师,xlliu@hrbust.edu

  • 中图分类号: TG146.2

Study on Constitutive Model for Titanium Alloy by Coupling Strain-temperature and Dynamic Crystallization

  • 摘要: Ti-6Al-4V合金的高速切削加工是一个复杂的高温高应变率的热力耦合过程,为更加准确研究Ti-6Al-4V合金在高温高应变率下的真实应力-应变关系,构建了一种修正Johnson-Cook(J-C)本构模型。修正的J-C本构模型综合考虑了塑性阶段应变硬化率会随加载温度的升高而降低的现象,以及在达到高温动态结晶效应的临界温度时,Ti-6Al-4V合金的流动应力会急剧下降的现象。基于修正J-C本构模型的流动应力-应变预测结果与试验数据吻合程度良好,误差率在8%以内,准确的反映了Ti-6Al-4V合金在不同加载温度下的真实应力-应变关系。
  • 图  1  Ti-6Al-4V合金在1 400 s−1应变率、室温~ 1 000 ℃下的真实应力-应变曲线

    图  2  Ti-6Al-4V合金在室温 ~ 1 000 ℃下J-C本构模型预测与真实应力应变关系的对比

    图  3  Ti-6Al-4V合金应变硬化率与加载温度的关系

    图  4  不同应变下流动应力随温度的变化

    图  5  25 ~ 1000 ℃温度下修正前后J-C本构模型预测曲线与真实应力应变曲线的对比

    图  6  不同温度时修正前后J-C本构方程的预测误差率

    表  1  Ti-6Al-4V合金的J-C本构模型的参数[23]

    A/MPaB/MPanCm
    997.5653.10.450.019 80.7
    下载: 导出CSV

    表  2  Ti-6Al-4V合金的修正J-C本构模型的参数

    A/MPaB/MPanCmr$\overline {\left( {\dfrac{{{\sigma _b}}}{{{\sigma _a}}}} \right)} $
    998651.90.4500.01950.70.0850.75
    下载: 导出CSV

    表  3  修正前后J-C本构方程预测值与实验数据对比

    温度/
    应变${\sigma _E}/{\rm{MPa}}$${\sigma _{JC}}/{\rm{MPa}}$${\sigma _{MJC}}/{\rm{MPa}}$${\varDelta _1}/\text{%}$${\varDelta _2}/\text{%}$
    200 0.10 1120.08 1056.32 1071.22 5.71 4.37
    0.15 1150.25 1094.93 1105.58 4.81 3.88
    0.20 1172.84 1265.55 1134.91 7.90 3.23
    0.25 1220.31 1295.36 1182.10 6.15 3.13
    600 0.10 752.23 827.65 700.83 10.01 6.83
    0.15 768.56 854.43 741.95 11.18 3.46
    0.20 783.25 873.22 772.66 11.43 1.35
    0.25 807.89 897.16 758.15 12.03 6.16
    1000 0.10 305.52 423.47 305.79 38.61 2.47
    0.15 302.31 440.76 315.60 45.80 4.40
    0.20 300.97 492.71 323.73 63.71 7.56
    0.25 299.48 506.61 325.81 70.30 7.92
    下载: 导出CSV
  • [1] 谭健. 双相钛合金Ti-6Al-4V在高应变率加载下变形和损伤各向异性[D]. 湘潭: 湘潭大学, 2018

    TAN J. Anisotropy of deformation and damage for dual titanium alloy Ti-6Al-4V under high strain rate loading[D]. Xiangtan: Xiangtan University, 2018 (in Chinese)
    [2] 柯志宏. ABAQUS二次开发在钛合金本构模型中的应用及切削仿真[D]. 天津: 天津大学, 2016

    KE Z H. Application of ABAQUS secondary development in constitutive modeling of titanium alloy and cutting FEA[D]. Tianjin: Tianjin University, 2016 (in Chinese)
    [3] DING R, GUO Z X, WILSON A. Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing[J]. Materials Science and Engineering: A, 2002, 327(2): 233-245 doi: 10.1016/S0921-5093(01)01531-3
    [4] 吕杨, 李晓岩. 航空航天用钛合金的切削加工现状及发展趋势[J]. 航空制造技术, 2012(14): 55-57 doi: 10.3969/j.issn.1671-833X.2012.14.009

    LYU Y, LI X Y. Status and development tendency of machining on titanium alloy for aviation and aerospace industry[J]. Aeronautical Manufacturing Technology, 2012(14): 55-57 (in Chinese) doi: 10.3969/j.issn.1671-833X.2012.14.009
    [5] 耿国盛. 钛合金高速铣削技术的基础研究[D]. 南京: 南京航空航天大学, 2006

    GENG G S. Fundamental research on high speed milling of titanium alloys[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese)
    [6] 王贵成, 王树林, 董广强. 高速加工工具系统[M]. 北京: 国防工业出版社, 2005

    WANG G C, WANG S L, DONG G Q. Tooling system for high speed machining[M]. Beijing: National Defense Industry Press, 2005 (in Chinese)
    [7] 杨建辉, 张鹏, 赵升吨. TC4-DT钛合金热变形本构方程[J]. 塑性工程学报, 2016, 23(2): 120-125

    YANG J H, ZHANG P, ZHAO S D. Hot deformation constitutive equation of TC4-DT titanium alloy[J]. Journal of Plasticity Engineering, 2016, 23(2): 120-125 (in Chinese)
    [8] 杨勇, 柯映林, 董辉跃. 金属切削加工中航空铝合金板材的本构模型[J]. 中国有色金属学报, 2005, 15(6): 854-859 doi: 10.3321/j.issn:1004-0609.2005.06.006

    YANG Y, KE Y L, DONG H Y. Constitutive model of aviation aluminum-alloy material in metal machining[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(6): 854-859 (in Chinese) doi: 10.3321/j.issn:1004-0609.2005.06.006
    [9] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. The Hague, the Netherlands: Unknown Publisher, 1983: 541-547
    [10] CHEN G, REN C Z, QIN X D, et al. Temperature dependent work hardening in Ti-6Al-4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling[J]. Materials & Design, 2015, 83: 598-610
    [11] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825 doi: 10.1063/1.338024
    [12] KHAN A S, SUH Y S, KAZMI R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. International Journal of Plasticity, 2004, 20(12): 2233-2248 doi: 10.1016/j.ijplas.2003.06.005
    [13] KHAN A S, YU S J. Deformation induced anisotropic responses of Ti-6Al-4V alloy. Part I: Experiments[J]. International Journal of Plasticity, 2012, 38: 1-13 doi: 10.1016/j.ijplas.2012.03.015
    [14] XU Z J, HUANG F L. Thermomechanical behavior and constitutive modeling of tungsten-based composite over wide temperature and strain rate ranges[J]. International Journal of Plasticity, 2013, 40: 163-184 doi: 10.1016/j.ijplas.2012.08.004
    [15] 余海燕, 王友. 不同温度和应变速率下TRIP钢的流动应力[J]. 同济大学学报, 2015, 43(2): 259-264

    YU H Y, WANG Y. Flow stress of TRIP steel at different temperatures and strain rates[J]. Journal of Tongji University, 2015, 43(2): 259-264 (in Chinese)
    [16] CAI J, WANG K S, ZHAI P, et al. A modified Johnson-Cook constitutive equation to predict hot deformation behavior of Ti-6Al-4V alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(1): 32-44 doi: 10.1007/s11665-014-1243-x
    [17] LIN Y C, CHEN X M, LIU G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science and Engineering: A, 2010, 527(26): 6980-6986 doi: 10.1016/j.msea.2010.07.061
    [18] 刘丽娟, 吕明, 武文革. Ti-6Al-4V合金的修正本构模型及其有限元仿真[J]. 西安交通大学学报, 2013, 47(7): 73-79 doi: 10.7652/xjtuxb201307014

    LIU L J, LYU M, WU W G. An improved constitutive model and finite element simulation for machining Ti-6Al-4V alloy[J]. Journal of Xi′ an Jiaotong University, 2013, 47(7): 73-79 (in Chinese) doi: 10.7652/xjtuxb201307014
    [19] 王琪, 郑百林, 张锴, 等. 考虑高温再结晶Ti-6Al-4V合金的修正J-C本构模型[J]. 金属热处理, 2016, 41(8): 179-183

    WANG Q, ZHENG B L, ZHANG K, et al. Modified Johnson-Cook constitutive equation of Ti-6Al-4V alloy considering high temperature recrystallization[J]. Heat Treatment of Metals, 2016, 41(8): 179-183 (in Chinese)
    [20] 侯鑫, 刘战强. 切削加工Ti-6Al-4V动态力学性能及变形行为研究[D]. 济南: 山东大学, 2019

    HOU X, LIU Z Q. Dynamic mechanical properties and deformation behavior in machining of Ti-6Al-4V alloy[D]. Ji′ nan: Shandong University, 2019 (in Chinese)
    [21] KASSNER M E, WANG M Z, PEREZ-PRADO M T, et al. Large-strain softening of aluminum in shear at elevated temperature[J]. Metallurgical and Materials Transactions A, 2002, 33(10): 3145-3153 doi: 10.1007/s11661-002-0300-5
    [22] CALAMAZ M, COUPARD D, GIROT F. Numerical simulation of titanium alloy dry machining with a strain softening constitutive law[J]. Machining Science and Technology, 2010, 14(2): 244-257 doi: 10.1080/10910344.2010.500957
    [23] SEO S, MIN O, YANG H. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J]. International Journal of Impact Engineering, 2005, 31(6): 735-754 doi: 10.1016/j.ijimpeng.2004.04.010
    [24] CHEN G, REN C Z, KE Z H, et al. Modeling of flow behavior for 7050-T7451 aluminum alloy considering microstructural evolution over a wide range of strain rates[J]. Mechanics of Materials, 2016, 95: 146-157 doi: 10.1016/j.mechmat.2016.01.006
    [25] 王大勇, 张连勇, 谌岩, 等. 高压高温处理对TC4钛合金微观力学性能的影响[J]. 金属热处理, 2016, 41(2): 143-146

    WANG D Y, ZHANG L Y, CHEN Y, et al. Effect of high pressure-high temperature treatment on micro-mechanical properties of TC4 alloy[J]. Heat Treatment of Metals, 2016, 41(2): 143-146 (in Chinese)
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 网络出版日期:  2021-11-19
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回