留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

先进高强钢DP780板料温成形本构参数识别

王凯迪 李迪 冷杨松 付秋涛 徐家川 姜宁

王凯迪,李迪,冷杨松, 等. 先进高强钢DP780板料温成形本构参数识别[J]. 机械科学与技术,2021,40(0):1-7 doi: 10.13433/j.cnki.1003-8728.20200232
引用本文: 王凯迪,李迪,冷杨松, 等. 先进高强钢DP780板料温成形本构参数识别[J]. 机械科学与技术,2021,40(0):1-7 doi: 10.13433/j.cnki.1003-8728.20200232
WANG Kaidi, LI Di, LENG Yangsong, FU Qiutao, XU Jiachuan, JIANG Ning. Identification of Constitutive Parameters for Sheet Warm Forming of Advanced High Strength Steel DP780[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20200232
Citation: WANG Kaidi, LI Di, LENG Yangsong, FU Qiutao, XU Jiachuan, JIANG Ning. Identification of Constitutive Parameters for Sheet Warm Forming of Advanced High Strength Steel DP780[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20200232

先进高强钢DP780板料温成形本构参数识别

doi: 10.13433/j.cnki.1003-8728.20200232
基金项目: 山东省自然科学基金项目(ZR2011EL037)
详细信息
    作者简介:

    王凯迪(1996−),硕士研究生,研究方向为车身轻量化材料研究,17865165067@163.com

    通讯作者:

    李迪,副教授,硕士生导师,hahali@sdut.edu.cn

  • 中图分类号: TG142

Identification of Constitutive Parameters for Sheet Warm Forming of Advanced High Strength Steel DP780

  • 摘要: 先进高强双相钢板料温成形的本构模型参数识别,是提高塑性变形行为仿真准确度的关键。通过建立基于拉丁超立方抽样法和Spearman秩相关性分析法的本构模型参数敏感度分析方法,进而实现了参数敏感度的整体性分析。然后结合敏感度分析结果、DP780钢单向拉伸试验以及拉伸过程有限元模拟,构建了不同温度下的距离函数和材料本构参数之间的响应面模型。将本构参数识别问题归结为求解最小距离函数问题,利用遗传算法进行优化计算,最终获得了不同温度下的DP780钢井上胜郎本构模型参数。结果表明,建立的本构参数识别方法较好地满足本构模型精度要求。
  • 图  1  应变率是3.33×10−3/s、不同温度下的应力-应变关系

    图  2  不同温度下,逆向识别参数后的本构模型预测值与试验值对比

    表  1  初始本构参数取值范围

    温度/Kknm
    573 [53.76, 59.74] [0.243, 0.297] [−0.008, −0.006]
    673 [59.70, 72.97] [0.178, 0.218] [−0.004, −0.006]
    773 [63.30, 71.04] [0.119, 0.145] [0.039, 0.047]
    873 [66.90,81.77] [0.096, 0.118] [0.127, 0.155]
    下载: 导出CSV

    表  2  温度为873 K时,本构参数敏感度

    样本数量knm
    10 0.4303 0.9879 0.4909
    50 0.3717 0.9863 0.4154
    100 0.3753 0.9841 0.4262
    200 0.3778 0.9841 0.4223
    500 0.3769 0.9844 0.4226
    1000 0.3768 0.9843 0.4224
    下载: 导出CSV

    表  3  不同温度本构模型参数敏感度

    温度/Kknm
    573 0.3605 0.7577 1
    673 0.3586 0.7581 1
    773 0.3592 0.7578 0.978
    873 0.3778 0.9841 0.4223
    下载: 导出CSV

    表  4  修正后本构参数取值范围

    温度/Kknm
    573 [53.76, 59.74] [0.257, 0.284] [−0.01, −0.0035]
    673 [59.70, 72.97] [0.188, 0.208] [−0.0075,−0.0025]
    773 [63.30, 71.04] [0.125, 0.138] [0.041, 0.045]
    873 [66.90, 81.77] [0.105, 0.109] [0.138, 0.148]
    下载: 导出CSV

    表  5  正交试验表

    温度/K水平因素
    knm
    573 −1 53.76 0.257 −0.01
    0 54.31 0.27 −0.007
    1 59.74 0.284 −0.0035
    673 −1 59.70 0.188 −0.0075
    0 66.34 0.198 −0.005
    1 72.97 0.208 −0.0025
    773 −1 63.30 0.125 0.041
    0 70.34 0.132 0.043
    1 71.04 0.138 0.045
    873 −1 66.90 0.105 0.138
    0 74.34 0.107 0.141
    1 81.77 0.109 0.148
    下载: 导出CSV

    表  6  遗传算法相关参数

    温度/K杂交概率变异概率种群规模终止进化代数
    573 0.85 0.12 60 90
    673 0.85 0.12 60 90
    773 0.85 0.12 60 90
    873 0.8 0.1 50 80
    下载: 导出CSV

    表  7  逆向识别的本构参数

    温度/Kmin(D(T))knm
    573 54.67 0.269 −0.006 0.005
    673 68.64 0.208 −0.007 0.009
    773 71.42 0.138 0.041 0.005
    873 76.74 0.105 0.138 0.007
    下载: 导出CSV
  • [1] 李琦, 阳林, 贺绍华. 面向汽车轻量化的先进高强度钢成型技术[J]. 客车技术与研究, 2012, 34(5): 47-50, 55 doi: 10.3969/j.issn.1006-3331.2012.05.019

    LI Q, YANG L, HE S H. Molding technology of advanced high strength steel for automobile Lightweight[J]. Bus & Coach Technology and Research, 2012, 34(5): 47-50, 55 (in Chinese) doi: 10.3969/j.issn.1006-3331.2012.05.019
    [2] 王存宇, 杨洁, 常颖, 等. 先进高强度汽车钢的发展趋势与挑战[J]. 钢铁, 2019, 54(2): 1-6

    WANG C Y, YANG J, CHANG Y, et al. Development trend and challenge of advanced high strength automobile steels[J]. Iron & Steel, 2019, 54(2): 1-6 (in Chinese)
    [3] 孙蓟泉, 李双娇, 尹衍军. 高强钢先进成型技术和本构模型研究现状与发展趋势[J]. 鞍钢技术, 2014(5): 1-6 doi: 10.3969/j.issn.1006-4613.2014.05.001

    SUN J Q, LI S J, YIN Y J. Advanced forming process for high strength steel and research status and development tendency of constitutive model[J]. Angang Technology, 2014(5): 1-6 (in Chinese) doi: 10.3969/j.issn.1006-4613.2014.05.001
    [4] 韩娟娟. 基于强塑积指标的车身用高强度钢板温成形性能研究[D]. 镇江: 江苏大学, 2013.

    HAN J J. Investigation on warm forming performance of high strength steel used in automobile body based on product of strength and ductility[D]. Zhenjiang: Jiangsu University, 2013 (in Chinese)
    [5] 项正波, 方刚. 双相钢DP780在高应变速率下的力学本构表征研究[J]. 汽车工程学报, 2019, 9(5): 380-384

    XIANG Z B, FANG G. Research on mechanical constitutive model of dual phase steel DP780 at the high strain rate[J]. Chinese Journal of Automotive Engineering, 2019, 9(5): 380-384 (in Chinese)
    [6] 田成达, 李大永, 彭颖红, 等. DP780高强钢板动态变形力学行为研究[J]. 塑性工程学报, 2008, 15(9): 102-106

    TIAN C D, LI D Y, PENG Y H, et al. Research on the dynamic deformation behavior of the DP780 advanced high strength steel[J]. Journal of Plasticity Engineering, 2008, 15(9): 102-106 (in Chinese)
    [7] 王学双, 曹广祥, 张义和, 等. DP780钢应变率敏感特性研究及本构方程的建立[J]. 汽车工艺与材料, 2014(3): 48-51 doi: 10.3969/j.issn.1003-8817.2014.03.013

    WANG X S, CAO G X, ZANG Y H, et al. Study on strain rate sensitivity of DP780 steel and establishment of constitutive equation[J]. Automobile Technology & Material, 2014(3): 48-51 (in Chinese) doi: 10.3969/j.issn.1003-8817.2014.03.013
    [8] 刘大海, 孟维金, 蒙骏鹏. DP780高强钢板材高应变率变形行为及本构模型[J]. 塑性工程学报, 2018, 25(1): 161-166, 174

    LIU D H, MENG W J, MENG J P. Deformation behavior and constitutive model of DP780 high strength steel at high strain rates[J]. Journal of Plasticity Engineering, 2018, 25(1): 161-166, 174 (in Chinese)
    [9] 冷杨松, 李迪, 曹凡, 等. 双相钢车身板DP780的温热成形本构模型[J]. 济南大学学报, 2019, 33(4): 301-307

    LENG Y S, LI D, CAO F, et al. Constitutive model of dual-phase steel body panel DP780 in warm forming[J]. Journal of University of Jinan, 2019, 33(4): 301-307 (in Chinese)
    [10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 4338-2006 金属材料高温拉伸试验方法[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T4338-2006 Metallic materials-Tensile testing at elevated temperature[S]. Beijing: China Standard Press, 2007 (in Chinese)
    [11] SIMPSON T W, DENNIS L, CHEN W. Sampling strategies for computer experiments: design and analysis[J]. International Journal of Reliability and Application, 2001, 2(3): 209-240
    [12] 黄文, 赵涵, 陆宏, 等. 基于单轴拉伸试验、模拟及优化方法的材料本构识别[J]. 塑性工程学报, 2019, 26(6): 251-255 doi: 10.3969/j.issn.1007-2012.2019.06.035

    HUANG W, ZHAO H, LU H, et al. Identification of constitutive equation of material based on uniaxial tension test, simulation and optimal method[J]. Journal of Plasticity Engineering, 2019, 26(6): 251-255 (in Chinese) doi: 10.3969/j.issn.1007-2012.2019.06.035
    [13] 盛鹰, 曾祥国, 韩悌信, 等. 钛合金动态本构模型参数敏感度分析及识别方法[J]. 四川大学学报, 2015, 47(S2): 110-117

    SHENG Y, ZENG X G, HAN T X, et al. Parameter sensitivity analysis and identification method for dynamic constitutive relationship of Titanium Alloy[J]. Journal of Sichuan University, 2015, 47(S2): 110-117 (in Chinese)
    [14] 徐小琴. 基于可识别分析的车用材料本构模型参数识别方法研究[D]. 广州: 华南理工大学, 2017.

    XU X Q. Research on parameter identification method of vehicle material constitutive model based on identifiable analysis[D]. Guangzhou: South China University of Technology, 2017 (in Chinese)
    [15] 闫晶, 杨合, 詹梅, 等. 一种确定管材本构参数的新方法及其应用[J]. 材料科学与工艺, 2009, 17(3): 297-300

    YAN J, YANG H, ZHAN M, et al. A new method to determine plastic constitutive parameters of tube and its applications[J]. Materials Science & Technology, 2009, 17(3): 297-300 (in Chinese)
    [16] 王梦寒, 王彦丽, 杨海. 基于响应面法的高强度钢板热冲压成形圆角破裂的工艺参数优化[J]. 中南大学学报, 2014, 45(12): 4161-4167

    WANG M H, WANG Y L, YANG H. Optimization of fillet cracking process parameters for high strength steel plate hot stamping based on response surface methodology[J]. Journal of Central South University, 2014, 45(12): 4161-4167 (in Chinese)
    [17] 周婷婷, 王罡, 杨洋, 等. Bammann-Chiesa-Johnson粘塑性本构模型的参数识别方法与验证[J]. 材料导报, 2017, 31(3): 75-79, 111

    ZHOU T T, WANG G, YANG Y, et al. A comprehensive Method of parameter identification and validation for Bammann-Chiesa-Johnson viscoplasticity constitutive model[J]. Materials Reports, 2017, 31(3): 75-79, 111 (in Chinese)
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-19
  • 网络出版日期:  2021-05-27

目录

    /

    返回文章
    返回