留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声雾化辅助切削钛合金的表面质量和刀具磨损

黄丙琪 孟建兵 胡益忠 栾晓声 董小娟 徐汝锋

黄丙琪,孟建兵,胡益忠, 等. 超声雾化辅助切削钛合金的表面质量和刀具磨损[J]. 机械科学与技术,2021,0(0):1-7 doi: 10.13433/j.cnki.1003-8728.20200222
引用本文: 黄丙琪,孟建兵,胡益忠, 等. 超声雾化辅助切削钛合金的表面质量和刀具磨损[J]. 机械科学与技术,2021,0(0):1-7 doi: 10.13433/j.cnki.1003-8728.20200222
HUANG Bingqi, MENG Jiabing, HU Yizhong, LUAN Xiaosheng, DONG Xiaojuan, XU Rufeng. Surface Quality and Tool Wear in Ultrasonic Atomization Assisted Cutting of Titanium Alloy[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20200222
Citation: HUANG Bingqi, MENG Jiabing, HU Yizhong, LUAN Xiaosheng, DONG Xiaojuan, XU Rufeng. Surface Quality and Tool Wear in Ultrasonic Atomization Assisted Cutting of Titanium Alloy[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20200222

超声雾化辅助切削钛合金的表面质量和刀具磨损

doi: 10.13433/j.cnki.1003-8728.20200222
基金项目: 山东省自然科学基金项目(No.ZR2018MEE028)与山东省重点研发计划(No.2019GGX104094)
详细信息
    作者简介:

    黄丙琪(1995−),硕士研究生,研究方向为难加工材料辅助切削技术,1145837956@qq.com

    通讯作者:

    孟建兵(1978−),副教授,博士,jianbingmeng@sdut.edu.cn

  • 中图分类号: TG712; TH161.1

Surface Quality and Tool Wear in Ultrasonic Atomization Assisted Cutting of Titanium Alloy

  • 摘要: 为了减轻钛合金干式切削时的刀具磨损,提高试件表面质量,提出了一种水基切削液超声雾化辅助切削的方法。首先,以TC4钛合金为切削对象,进行了钛合金干式切削试验。然后,以纳米级水溶性油基切削液与去离子水混合后形成的乳化液为雾化介质,由超声雾化器转化为微小液滴并作用于刀工界面,进行了超声雾化辅助切削试验。最后,对比分析了超声雾化辅助前后,TC4工件表面粗糙度、刀具磨损、元素扩散和切屑形貌等情况。实验结果表明:与干式切削相比,超声雾化辅助切削后的钛合金表面粗糙度降低47.6%、后刀面刀具磨损值最大降低36 μm、刀具表面Ti、O元素含量分别从78.72%、6.32%减少到75.49%、1.85%。
  • 图  1  超声雾化辅助切削钛合金装置

    图  2  不同切削方式下Ra随切削速度的变化趋势

    图  3  干式切削条件下刀具磨损值随切削速度的变化

    图  4  超声雾化辅助下刀具磨损值随切削速度的变化

    图  5  干式切削条件下不同切削速度时的刀具磨损形貌

    图  6  超声雾化辅助下刀具磨损值随切削速度的变化趋势

    图  7  两种切削环境下的刀具磨损EDS能谱

    图  8  干式切削下的切屑微观形貌

    图  9  超声雾化辅助切削下的切屑微观形貌

    表  1  TC4钛合金的化学组分 %

    w(Ti) 余量 w(O) 0.2
    w(V) 3.5~4.5 w(C) 0.1
    w(Al) 5.5-6.8 w(N) 0.05
    w(Fe) 0.3 w(H) 0.015
    下载: 导出CSV

    表  2  切削试验参数

    切削参数数值
    切削速度/(m·min−1 20、30、40、50、60
    背吃刀量/mm 0.4
    进给量/(mm·r−1) 0.1
    下载: 导出CSV

    表  3  干式切削刀具后刀面元素质量分数

    w(Ti)w(Al)w(O)w(C)
    78.723.236.324.79
    下载: 导出CSV

    表  4  超声雾化辅助切削刀具后刀面元素质量分数

    w(Ti)w(Al)w(O)w(C)
    75.493.831.853.28
    下载: 导出CSV
  • [1] WANG Y S, ZOU B, HUANG C Z. Tool wear mechanisms and micro-channels quality in micro-machining of Ti-6Al-4V alloy using the Ti(C7N3)-based cermet micro-mills[J]. Tribology International, 2019, 134: 60-76 doi: 10.1016/j.triboint.2019.01.030
    [2] 王霄, 邱唐标, 顾宇轩, 等. 激光间接冲击下钛箔的微成形特性[J]. 光学 精密工程, 2015, 23(3): 632-638 doi: 10.3788/OPE.20152303.0632

    WANG X, QIU T B, GU Y X, et al. Micro-forming properties of Ti foil under laser indirect shock[J]. Optics and Precision Engineering, 2015, 23(3): 632-638 (in Chinese) doi: 10.3788/OPE.20152303.0632
    [3] ZHANG X Y, FANG G, LEEFLANG S, et al. Effect of subtransus heat treatment on the microstructure and mechanical properties of additively manufactured Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, 2018, 735: 1562-1575 doi: 10.1016/j.jallcom.2017.11.263
    [4] 张翔宇, 隋翯, 张德远, 等. 高速超声振动切削钛合金可行性研究[J]. 机械工程学报, 2017, 53(19): 120-127 doi: 10.3901/JME.2017.19.120

    ZHANG X Y, SUI H, ZHANG D Y, et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Mechanical Engineering, 2017, 53(19): 120-127 (in Chinese) doi: 10.3901/JME.2017.19.120
    [5] RAO C M, RAO S S, HERBERT M A. Development of novel cutting tool with a micro-hole pattern on PCD insert in machining of titanium alloy[J]. Journal of Manufacturing Processes, 2018, 36: 93-103 doi: 10.1016/j.jmapro.2018.09.028
    [6] SUN F J, QU S G, PAN Y X, et al. Effects of cutting parameters on dry machining Ti-6Al-4V alloy with ultra-hard tools[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 351-360 doi: 10.1007/s00170-014-6717-3
    [7] YAN L T, ZHANG Q J, YU J Z. Effects of continuous minimum quantity lubrication with ultrasonic vibration in turning of titanium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98: 827-837 doi: 10.1007/s00170-018-2323-0
    [8] BORDIN A, SARTORI S, BRUSCHI S, et al. Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by Additive Manufacturing[J]. Journal of Cleaner Production, 2017, 142: 4142-4151 doi: 10.1016/j.jclepro.2016.09.209
    [9] LEQUIEN P, POULACHON G, OUTEIRO J C. Thermomechanical analysis induced by interrupted cutting of Ti6Al4V under several cooling strategies[J]. CIRP Annals, 2018, 67(1): 91-94 doi: 10.1016/j.cirp.2018.03.018
    [10] 张昌娟, 焦锋, 赵波, 等. 激光超声复合切削硬质合金的刀具磨损及其对工件表面质量的影响[J]. 光学精密工程, 2016, 24(6): 1413-1423 doi: 10.3788/OPE.20162406.1413

    ZHANG C J, JIAO F, ZHAO B, et al. Tool wear in laser ultrasonically assisted cutting cemented carbide and its effect on surface quality[J]. Optics and Precision Engineering, 2016, 24(6): 1413-1423 (in Chinese) doi: 10.3788/OPE.20162406.1413
    [11] HONG S Y, MARKUS I, JEONG W C. New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture, 2001, 41(15): 2245-2260 doi: 10.1016/S0890-6955(01)00041-4
    [12] MIA M, KHAN M A, RAHMAN S S, et al. Mono-objective and multi-objective optimization of performance parameters in high pressure coolant assisted turning of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 109-118 doi: 10.1007/s00170-016-9372-z
    [13] 肖虎, 李亮. TC4钛合金在低温CO2冷却下的切削性能[J]. 中国机械工程, 2017, 28(8): 883-887

    XIAO H, LI L. High speed cutting of TC4 titanium alloy under cryogenic CO2 cooling conditions[J]. China Mechanical Engineering, 2017, 28(8): 883-887 (in Chinese)
    [14] STEPHENSON D A, SKERLOS S J, KING A S, et al. Rough turning Inconel 750 with supercritical CO2-based minimum quantity lubrication[J]. Journal of Materials Processing Technology, 2014, 214(3): 673-680 doi: 10.1016/j.jmatprotec.2013.10.003
    [15] 刘暐, 刘朋和, 姜增辉. 复合喷雾冷却条件下高速车削TC4钛合金硬质合金刀具磨损的研究[J]. 制造技术与机床, 2014(12): 128-131

    LIU W, LIU P H, JIANG Z H. Study on the wear of the carbide tool during turning TC4 titanium alloy with high speed under the condition of composite spray cooling[J]. Manufacturing Technology & Machine Tool, 2014(12): 128-131 (in Chinese)
    [16] SUPEKAR S D, GOZEN B A, GOZEN B, et al. Feasibility of supercritical carbon dioxide based metalworking fluids in micromilling[J]. Journal of Manufacturing Science and Engineering, 2013, 135(2): 024501 doi: 10.1115/1.4023375
    [17] 秦国华, 谢文斌, 王华敏. 基于神经网络与遗传算法的刀具磨损检测与控制[J]. 光学·精密工程, 2015, 23(5): 1314-1321 doi: 10.3788/OPE.20152305.1314

    QIN G H, XIE W B, WANG H M. Detection and control for tool wear based on neural network and genetic algorithm[J]. Optics and Precision Engineering, 2015, 23(5): 1314-1321 (in Chinese) doi: 10.3788/OPE.20152305.1314
    [18] SUN T, FU Y C, HE L, et al. Machinability of plunge milling for damage-tolerant titanium alloy TC21[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85: 1315-1323 doi: 10.1007/s00170-015-8022-1
  • 加载中
计量
  • 文章访问数:  26
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 网络出版日期:  2021-05-26

目录

    /

    返回文章
    返回