Sliding Mode Control of Yaw Stability for Multi-wheel Independent Electric Drive Vehicle
-
摘要: 以某型多轮独立电驱动车辆为研究对象,针对车辆稳定性问题,提出了基于横摆角速度和质心侧偏角联合控制的横摆力矩滑模控制方法。控制器采用分层控制结构,控制器上层基于滑模控制理论,首先分别独立控制质心侧偏角和横摆角速度,分别得出附加力矩目标值,而后加权求和得到附加横摆力矩目标值,其中加权函数能够动态反映车辆行驶状态;控制器下层考虑电机输出约束和地面附着约束进行力矩优化分配。实验仿真结果表明, 相比经典PID控制方法,上述控制方法有效提高了车辆的稳定性。Abstract: A sliding mode control method of yaw moment based on the combined control of yaw rate and side slip angle was proposed to solve the problem of vehicle yaw stability for a type of multi-wheel independent electric vehicles. The controller was designed in a hierarchical structure. Firstly, based on the sliding mode control theory, the upper controllers controlled the yaw rate and side slip angle respectively, and the target value of the additional yaw-moment was obtained. Then, we used weighted summation of out-up of two parts to get the final target of the additional yaw-moment. Finally, the lower controller adopted motor output constraint and ground adhesion constraint to optimize torque distribution. The simulation test results showed that the sliding mode control method can effectively improve the yaw stability of the vehicle compared with the classical PID control method.
-
Key words:
- multi-wheel electric vehicle /
- motors /
- yaw-moment control /
- sliding mode control /
- yaw stability
-
表 1 车辆及电机驱动系统部分参数
参数名称 数值 整车质量/kg 23 000 驱动方式 8轮独立驱动 轮毂电机类型 永磁同步电机 车身长/宽/高/轮距/m 7.8/2.9/2/2.6 桥间距(1-2/2-3/3-4)/m 1.1/1.8/1.9 轮毂电机额定功率/kW 90 轮毂电机峰值功率/kW 110 峰值转矩/(N·m) 1 100 最高转速/(r·min-1) 6 000 方向盘最大转角/(°) 900 -
[1] 欧健, 胡经庆, 杨鄂川, 等. 基于横摆力矩控制的电动汽车横向稳定性研究[J]. 机械设计与制造, 2016(4): 182-185 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201604048.htmOU J, HU J Q, YANG E C, et al. Research on electric vehicle handling stability based on yaw moment control[J]. Machinery Design & Manufacture, 2016(4): 182-185 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201604048.htm [2] 李刚, 韩海兰, 赵德阳. 四轮轮毂电机电动汽车横摆力矩模糊PI控制研究[J]. 机械设计与制造, 2015(7): 103-107 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201507031.htmLI G, HAN H L, ZHAO D Y. Study on yaw moment control for electric vehicle with four-wheel in-wheel motor based on fuzzy PI control[J]. Machinery Design & Manufacture, 2015(7): 103-107 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201507031.htm [3] 阳贵兵, 马晓军, 廖自力, 等. 轮毂电机驱动车辆双重转向直接横摆力矩控制[J]. 兵工学报, 2016, 37(2): 211-218 https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201602003.htmYANG G B, MA X J, LIAO Z L, et al. Direct yaw moment control in dual-steering for in-wheel motor drive vehicle[J]. Acta Armamentarii, 2016, 37(2): 211-218 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201602003.htm [4] RAJAMANI R. Vehicle dynamics and control[M]. New York: Springer, 2006: 23-25 [5] 刘秋生, 徐延海, 陈启, 等. 4WID轮毂电机式电动汽车横摆稳定性滑模控制研究[J]. 广西大学学报, 2015, 40(5): 1080-1091 https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201505005.htmLIU Q S, XU Y H, CHEN Q, et al. Research on Study on sliding mode control for the yaw stability of 4 WID wheel motor electric vehicle[J]. Journal of Guangxi University, 2015, 40(5): 1080-1091 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201505005.htm [6] 陈国平, 杨舒涵. 电动轮汽车差动助力转向稳定性控制策略[J]. 重庆理工大学学报, 2018, 32(3): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201803001.htmCHEN G P, YANG S H. Stability control strategy of differential assist steering system based on electric vehicle with in-wheel motors[J]. Journal of Chongqing University of Technology, 2018, 32(3): 1-9 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201803001.htm [7] ZHU T J, KHAJEPOUR A, ZHENG H Y. Development of holistic corner control for electric vehicle using a new driver command interpreter[C]//Proceedings of the International Conference on Artificial Intelligence and Robotics and the International Conference on Automation, Control and Robotics Engineering. Kitakyushu: ACM, 2016: 9 [8] 周兵, 徐蒙, 袁希文, 等. 基于滑模极值搜索算法的车辆驱动防滑控制策略[J]. 农业机械学报, 2015, 46(2): 307-311, 342 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201502045.htmZHOU B, XU M, YUAN X W, et al. Acceleration slip regulation based on Extremum seeking control with sliding mode[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 307-311, 342 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201502045.htm [9] LI C S, SONG P, CHEN G Y, et al. Driving and steering coordination Control for 4WID/4WIS electric vehicle[C]// Proceedings of SAE 2015 Commercial Vehicle Engineering Congress. United States: SAE, 2015: 71-77 [10] 谢克明. 现代控制理论[M]. 北京: 清华大学出版社, 2007: 195-204XIE K M. Modern control theory[M]. Beijing: Tsinghua University Press, 2007: 195-204 (in Chinese) [11] JU F, ZHUANG W C, WANG L M, et al. A novel four-wheel-drive hybrid electric sport utility vehicle with double planetary gears[J]. IFAC-PapersOnline, 2018, 51(31): 81-86 doi: 10.1016/j.ifacol.2018.10.016 [12] 杨康, 王振臣, 赵莎. 基于滑模变结构控制的车辆稳定性研究[J]. 现代制造工程, 2014(10): 53-59 https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201410013.htmYANG K, WANG Z C, ZHAO S. Study of vehicle stability base on sliding model control[J]. Modern Manufacturing Engineering, 2014(10): 53-59 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201410013.htm [13] WILLIAMS D E. Generalised multi-axle vehicle handling[J]. Vehicle System Dynamics, 2012, 50(1): 149-166 doi: 10.1080/00423114.2011.577225 [14] WU X G, ZHENG D Y, WANG T Z, et al. Torque optimal allocation strategy of all-wheel drive electric vehicle based on difference of efficiency Characteristics between Axis Motors[J]. Energies, 2019, 12(6): 1-16 http://www.researchgate.net/publication/330860329_torque_optimal_allocation_strategy_of_all-wheel_drive_electric_vehicle [15] (日)安部正人. 车辆操纵动力学[M]. 喻凡, 译. 北京: 机械工业出版社, 2016: 119-209ABE M. Vehicle handling dynamics: theory and application[M]. Yu F, trans. Beijing: China Machine Press, 2018: 119-209 (in Chinese) -