留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爬壁机器人解析动力学建模与仿真

刘佳 蔡文霞 孙宏强

刘佳, 蔡文霞, 孙宏强. 爬壁机器人解析动力学建模与仿真[J]. 机械科学与技术, 2021, 40(3): 371-376. doi: 10.13433/j.cnki.1003-8728.20200067
引用本文: 刘佳, 蔡文霞, 孙宏强. 爬壁机器人解析动力学建模与仿真[J]. 机械科学与技术, 2021, 40(3): 371-376. doi: 10.13433/j.cnki.1003-8728.20200067
LIU Jia, CAI Wenxia, SUN Hongqiang. Analytical Dynamic Modeling and Simulation of Climbing Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 371-376. doi: 10.13433/j.cnki.1003-8728.20200067
Citation: LIU Jia, CAI Wenxia, SUN Hongqiang. Analytical Dynamic Modeling and Simulation of Climbing Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 371-376. doi: 10.13433/j.cnki.1003-8728.20200067

爬壁机器人解析动力学建模与仿真

doi: 10.13433/j.cnki.1003-8728.20200067
基金项目: 

河北省高等学校科学技术研究项目 QN2020510

河北省教育厅高等学校科学研究项目 Z2019038

河北省省级科技计划自筹经费项目 18211928

石家庄学院博士科研启动基金项目 18BS014

详细信息
    作者简介:

    刘佳(1982-), 讲师, 博士, 研究方向为机器人机构学, bhwxcd2013@sina.com

  • 中图分类号: TH113

Analytical Dynamic Modeling and Simulation of Climbing Robot

  • 摘要: 针对爬壁机器人的动力学建模问题,通过构造虚拟机构将爬壁机器人转换为具有固定基的开链系统,基于旋量理论并借助传统的拉格朗日建模方法给出了爬壁机器人未受约束时的动力学方程。借助Udwadia-Kalaba理论的建模思想,获得了爬壁机器人在预定轨迹下的解析动力学方程,避免了传统拉格朗日方程对于拉格朗日算子的依赖。数值仿真结果证明了该方法的有效性。
  • 图  1  爬壁机器人等效运动模型

    图  2  左右驱动轮的坐标系示意图

    图  3  爬壁机器人x方向位移示意图

    图  4  移动机器人y方向位移示意图

    图  5  x方向的位移误差

    图  6  y方向的位移误差

    图  7  爬壁机器人的运动轨迹对比示意图

  • [1] GHAFFARI A, SHARIATI A, SHAMEKHI A H. A modified dynamical formulation for two-wheeled self-balancing robots[J]. Nonlinear Dynamics, 2016, 83(1-2): 217-230 doi: 10.1007/s11071-015-2321-9
    [2] KIM S, KWON S. Dynamic modeling of a two-wheeled inverted pendulum balancing mobile robot[J]. International Journal of Control, Automation and Systems, 2015, 13(4): 926-933 doi: 10.1007/s12555-014-0564-8
    [3] ZHONG G L, KOBAYASHI Y, HOSHINO Y, et al. System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty[J]. Nonlinear Dynamics, 2013, 73(1-2): 167-182 doi: 10.1007/s11071-013-0776-0
    [4] WANG Y N, WU X R. Neural networks-based adaptive robust control of crawler-type mobile manipulators using sliding mode approach[J]. Industrial Robot, 2012, 39(3): 260-270 doi: 10.1108/01439911211217099
    [5] TSAI C C, CHENG M B, LIN S C. Dynamic modeling and tracking control of a nonholonomic wheeled mobile manipulator with dual arms[J]. Journal of Intelligent and Robotic Systems, 2006, 47(4): 317-340 doi: 10.1007/s10846-006-9072-2
    [6] UDWADIA F E, WANICHANON T. Control of uncertain nonlinear multibody mechanical systems[J]. Journal of Applied Mechanics, 2014, 81(4): 041020 doi: 10.1115/1.4025399
    [7] UDWADIA F E, WANICHANON T, CHO H. Methodology for satellite formation-keeping in the presence of system uncertainties[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5): 1611-1624 doi: 10.2514/1.G000317
    [8] UDWADIA F E, KOGANTI P B. Dynamics and control of a multi-body planar pendulum[J]. Nonlinear Dynamics, 2015, 81(1-2): 845-866 doi: 10.1007/s11071-015-2034-0
    [9] SCHUTTE A, UDWADIA F E. Explicit control force and torque determination for satellite formation-keeping with attitude requirements[J]. Journal of Applied Mechanics, 2011, 78(2): 1-11 doi: 10.2514/1.55873
    [10] LIU J, LIU R. Dynamic modeling of dual-arm cooperating manipulators based on Udwadia-Kalaba equation[J]. Advances in Mechanical Engineering, 2016, 8(7): 1-10 http://ade.sagepub.com/content/8/7/1687814016658849.abstract
    [11] YANG X L, CHEN Z Y, XU S P, et al. Udwadia-Kalaba approach for three link manipulator dynamics with motion constraints[J]. IEEE Access, 2019, 7: 49240-49250 doi: 10.1109/ACCESS.2019.2909934
    [12] LYU G Z, LIU R. Determination of stability correction parameters for dynamic equations of constrained multibody systems[J]. Mathematical Problems in Engineering, 2018, 2018: 8945301 http://www.researchgate.net/publication/324988557_Determination_of_Stability_Correction_Parameters_for_Dynamic_Equations_of_Constrained_Multibody_Systems
    [13] XU Y R, LIU R. Dynamic modeling of constrained planar multibody systems: A case of lower limbs rehabilitative robot[J]. Journal of Mechanical Science and Technology, 2018, 32(7): 3389-3394 doi: 10.1007/s12206-018-0642-6
    [14] XU Y R, LIU R. Concise method to the dynamic modeling of climbing robot[J]. Advances in Mechanical Engineering, 2017, 9(2): 168781401769167 http://www.researchgate.net/publication/313252353_Concise_method_to_the_dynamic_modeling_of_climbing_robot
    [15] 徐亚茹, 刘荣. 一种爬壁机器人动力学建模方法[J]. 北京航空航天大学学报, 2018, 44(2): 280-285 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201802009.htm

    XU Y R, LIU R. An approach for dynamic modeling of climbing robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 280-285 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201802009.htm
    [16] CHEN Y H. Second-order constraints for equations of motion of constrained systems[J]. IEEE/ASME Transactions on Mechatronics, 1998, 3(3): 240-248 doi: 10.1109/3516.712120
    [17] SUN H, ZHAO H, ZHEN S C, et al. Application of the Udwadia-Kalaba approach to tracking control of mobile robots[J]. Nonlinear Dynamics, 2016, 83(1-2): 389-400 doi: 10.1007/s11071-015-2335-3
    [18] UDWADIA F E, PHOHOMSIRI P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics[J]. Proceedings of the Royal Society A, 2006, 462(2071): 2097-2117 doi: 10.1098/rspa.2006.1662
    [19] CHO H, UDWADIA F E. Explicit solution to the full nonlinear problem for satellite formation-keeping[J]. Acta Astronautica, 2010, 67(3-4): 369-387 doi: 10.1016/j.actaastro.2010.02.010
  • 加载中
图(7)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  29
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-18
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回