留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自动驾驶横向运动控制的改进LQR方法研究

高琳琳 唐风敏 郭蓬 何佳

高琳琳, 唐风敏, 郭蓬, 何佳. 自动驾驶横向运动控制的改进LQR方法研究[J]. 机械科学与技术, 2021, 40(3): 435-441. doi: 10.13433/j.cnki.1003-8728.20200066
引用本文: 高琳琳, 唐风敏, 郭蓬, 何佳. 自动驾驶横向运动控制的改进LQR方法研究[J]. 机械科学与技术, 2021, 40(3): 435-441. doi: 10.13433/j.cnki.1003-8728.20200066
GAO Linlin, TANG Fengmin, GUO Peng, HE Jia. Research on Improved LQR Control for Self-driving Vehicle Lateral Motion[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 435-441. doi: 10.13433/j.cnki.1003-8728.20200066
Citation: GAO Linlin, TANG Fengmin, GUO Peng, HE Jia. Research on Improved LQR Control for Self-driving Vehicle Lateral Motion[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 435-441. doi: 10.13433/j.cnki.1003-8728.20200066

自动驾驶横向运动控制的改进LQR方法研究

doi: 10.13433/j.cnki.1003-8728.20200066
基金项目: 

国家重点研发计划项目 2017YFB0102500

详细信息
    作者简介:

    高琳琳(1985-), 博士后, 研究方向为车辆动力学, lingyunzhi1046@126.com

  • 中图分类号: U461.99

Research on Improved LQR Control for Self-driving Vehicle Lateral Motion

  • 摘要: 针对自动驾驶横向运动控制问题,提出一种带有前馈控制的改进LQR横向运动控制方法。首先,利用二自由度车辆动力学模型构建了路径跟踪误差动力学模型,设计了自动驾驶LQR控制器以及前馈控制器。随后,针对LQR控制器参数进行分析,提出一种基于路径跟踪误差的参数计算方法和一种基于车-路位置关系的参数调整规则,以此实现LQR控制器的改进,提高控制器的适应性与控制精度。最后,通过Matlab/Carsim联合仿真测试设计的控制器。结果表明,不论是双移线工况还是连续换道工况,设计的控制器均能较好地跟踪目标路径,且能够将距离偏差和航向偏差控制在较小范围内。
  • 图  1  车辆动力学与路径跟踪误差模型

    图  2  车-路位置关系

    图  3  双移线工况测试结果

    图  4  连续换道工况测试结果

    表  1  参数调整规则

    eψ ey>0 ey≤0
    ≥0 q1增加, q3不变 q1不变, q3增加
    <0 q1不变, q3增加 q1增加, q3不变
    下载: 导出CSV

    表  2  主要车辆参数

    参数名 数值
    整车质量/kg 1 310
    轴距/m 2.91
    前轴侧偏刚度/(N·rad-1) 44 776.14
    后轴侧偏刚度/(N·rad-1) 74 568.56
    质心高度/m 0.54
    质心到前轴距离/m 1.015
    x轴转动惯量/(kg·m2) 536.6
    y轴转动惯量/(kg·m2) 1 536.7
    z轴转动惯量/(kg·m2) 1 536.7
    下载: 导出CSV

    表  3  双移线工况与连续换道工况偏差数据

    工况 名称 前馈+ 改进LQR 前馈+ LQR LQR
    双移线工况 max(|ey|)/m 0.340 3 1.152 5 2.566 9
    mean(|ey|)/m 0.041 5 0.175 9 0.426 7
    max(|eψ|)/rad 0.096 4 0.092 5 0.290 1
    mean(|ey|)/rad 0.023 4 0.021 7 0.060 1
    连续换道工况 max(|ey|)/m 0.038 7 0.119 2 0.425 8
    mean(|ey|)/m 0.021 8 0.070 2 0.254 8
    max(|eψ|)/rad 0.007 4 0.009 6 0.024 4
    mean(|ey|)/rad 0.004 5 0.005 6 0.014 1
    下载: 导出CSV
  • [1] GIAIMO F, BERGER C. Design criteria to architect continuous experimentation for self-driving vehicles[C]// 2017 IEEE International Conference on Software Architecture (ICSA). Gothenburg, Sweden: IEEE, 2017
    [2] PADEN B, ČÁP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33-55 doi: 10.1109/TIV.2016.2578706
    [3] XIN M, MINOR M A. Variable structure backstepping control via a hierarchical manifold set for graceful ground vehicle path following[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013
    [4] KIM C I, KIM M S, LEE K S, et al. Development of a full speed range path-following system for the autonomous vehicle[C]//2015 15th International Conference on Control, Automation and Systems (ICCAS). Gothenburg, Sweden: IEEE, 2015
    [5] Rajamani R. 车辆动力学及控制[M]. 王国业, 江发潮, 张露, 译. 北京: 机械工业出版社, 2011

    RAJAMANI R. Vehicle dynamics and control[M]. Wang G Y, Jiang F C, Zhang L, trans. Beijing: China Machine Press, 2011 (in Chinese)
    [6] 陈无畏, 王家恩, 汪明磊, 等. 视觉导航智能车辆横向运动的自适应预瞄控制[J]. 中国机械工程, 2014, 25(5): 698-704

    CHEN W W, WANG J E, WANG M L, et al. Adaptive preview control of vision guided intelligent vehicle lateral movement[J]. China Mechanical Engineering, 2014, 25(5): 698-704 (in Chinese)
    [7] GUO H Y, CAO D P, CHEN H, et al. Model predictive path following control for autonomous cars considering a measurable disturbance: implementation, testing, and verification[J]. Mechanical Systems and Signal Processing, 2019, 188: 41-60
    [8] AL-MAYYAHI A, WANG W, Birch P. Path tracking of autonomous ground vehicle based on fractional order PID controller optimized by PSO[C]//2015 IEEE 13th International Symposium on Applied Machine Intelligence and Informatics (SAMI). Herl'any, Slovakia: IEEE, 2015
    [9] 赵盼. 城市环境下无人驾驶车辆运动控制方法的研究[D]. 合肥: 中国科学技术大学, 2012

    ZHAO P. Research on motion contorl approaches of autonomous vehicle in urban environments[D]. Hefei: University of Science and Technology of China, 2012 (in Chinese)
    [10] MORALES J, MARTÍNEZ J L, MARTÍNEZ M A, et al. Pure-pursuit reactive path tracking for nonholonomic mobile robots with a 2D laser scanner[J]. Eurasip Journal on Advances in Signal Processing, 2009, 2009(1): 935237 doi: 10.1155/2009/935237
    [11] THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692 doi: 10.1002/rob.20147
    [12] 姚俊琴. 基于环形预瞄算法的智能车路径跟踪研究[D]. 北京: 北京工业大学, 2014

    YAO J Q. Research on path tracking of intelligent vehicle based on circular preview algorithm[D]. Beijing: Beijing University of Technology, 2014 (in Chinese)
    [13] 段建民, 田晓生, 夏天, 等. 基于模型预测控制的智能汽车目标路径跟踪方法研究[J]. 汽车技术, 2017(8): 6-11

    DUAN J M, TIAN X S, XIA T, et al. Research on target path tracking method of intelligent vehicle based on model predictive control[J]. Automobile Technology, 2017(8): 6-11 (in Chinese)
    [14] KAYACAN E, RAMON H, Saeys W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 806-814 doi: 10.1109/TMECH.2015.2492984
    [15] WANG N, SUN Z, ZHENG Z J, et al. Finite-time sideslip observer-based adaptive fuzzy path-following control of underactuated marine vehicles with time-varying large sideslip[J]. International Journal of Fuzzy Systems, 2018, 20(6): 1767-1778 doi: 10.1007/s40815-017-0392-0
    [16] 王荣本, 张荣辉, 储江伟, 等. 区域交通智能车辆控制器优化设计和品质分析[J]. 农业机械学报, 2007, 38(1): 22-25

    WANG R B, ZHANG R H, CHU J W, et al. Optimizing design and quality analysis for cybercar controller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 22-25 (in Chinese)
    [17] 倪兰青, 林棻, 王凯正. 基于预瞄的智能车辆路径跟踪控制研究[J]. 重庆理工大学学报, 2017, 31(3): 27-33

    NI L Q, LIN F, WANG K Z. Research on path-following control of intelligent vehicles based on preview model[J]. Journal of Chongqing University of Technology, 2017, 31(3): 27-33 (in Chinese)
    [18] 孟宇, 汪钰, 顾青, 等. 基于预见位姿信息的铰接式车辆LQR-GA路径跟踪控制[J]. 农业机械学报, 2018, 49(6): 375-384

    MENG Y, WANG Y, GU Q, et al. LQR-GA path tracking control of articulated vehicle based on predictive information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 375-384 (in Chinese)
    [19] 黄海洋, 张建, 王宇, 等. 基于多点预瞄最优控制的智能车辆路径跟踪[J]. 汽车技术, 2018(10): 6-9

    HUANG H Y, ZHANG J, WANG Y, et al. Path traking for intelligent vehicle based on the optimal multipoint preview control[J]. Automobile Technology, 2018(10): 6-9 (in Chinese)
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  19
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-26
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回