留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

足球机器人态势评估的直觉模糊算法

赵孟文 樊泽明

赵孟文, 樊泽明. 足球机器人态势评估的直觉模糊算法[J]. 机械科学与技术, 2020, 39(5): 780-785. doi: 10.13433/j.cnki.1003-8728.20200051
引用本文: 赵孟文, 樊泽明. 足球机器人态势评估的直觉模糊算法[J]. 机械科学与技术, 2020, 39(5): 780-785. doi: 10.13433/j.cnki.1003-8728.20200051
Zhao Mengwen, Fan Zeming. Intuitionistic Fuzzy Algorithm of Situation Assessment for Soccer Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 780-785. doi: 10.13433/j.cnki.1003-8728.20200051
Citation: Zhao Mengwen, Fan Zeming. Intuitionistic Fuzzy Algorithm of Situation Assessment for Soccer Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 780-785. doi: 10.13433/j.cnki.1003-8728.20200051

足球机器人态势评估的直觉模糊算法

doi: 10.13433/j.cnki.1003-8728.20200051
详细信息
    作者简介:

    赵孟文(1968-), 副教授, 本科, 研究方向为控制理论及应用, zhaomw369@163.com

  • 中图分类号: TP242

Intuitionistic Fuzzy Algorithm of Situation Assessment for Soccer Robot

  • 摘要: 针对足球机器人赛场的态势评估问题,提出了一种赛场态势评估的直觉模糊算法,首先建立了直觉模糊综合评判模型,接着制定态势评估所需的指标体系,并给出了评判指标的效用值计算等度量问题和指标值的规范化方法,最后结合德尔菲和层次分析法来确定评估指标的权重向量。实验表明,该评估方法计算复杂度小,在赛场评估中可给出有效的综合评价,具有较高的可信性。
  • 图  1  赛场态势评估指标体系思路框架

    图  2  直觉模糊度量值排序流程图

    表  1  足球机器人赛场态势评估体系

    Ai Aij RR Wij
    BT BR GD MD BD WR WT
    A1=0.3 A11 0 0 0.1 0.1 0.3 0.3 0.2 0.220 4
    A12 0 0 0 0.1 0.4 0.3 0.2 0.207 9
    A13 0 0 0 0.2 0.3 0.3 0.2 0.311 8
    A14 0 0 0.1 0.1 0.2 0.3 0.3 0.155 9
    A15 0 0 0.2 0.1 0.1 0.3 0.3 0.103 9
    A2=0.25 A21 0 0 0.2 0.1 0.2 0.2 0.3 0.352 9
    A22 0 0 0.2 0.1 0.2 0.2 0.3 0.235 3
    A23 0 0 0.2 0.1 0.1 0.2 0.4 0.117 6
    A24 0 0 0.1 0.1 0.1 0.4 0.3 0.294 1
    A3=0.25 A31 0 0 0.2 0.1 0.1 0.3 0.3 0.304 3
    A32 0 0 0 0.2 0.2 0.5 0.1 0.217 4
    A33 0 0 0.1 0.1 0.2 0.3 0.3 0.217 4
    A34 0 0 0.1 0.2 0.3 0.3 0.1 0.260 9
    A4=0.2 A41 0 0 0.1 0.2 0.3 0.2 0.2 0.461 5
    A42 0 0 0 0.2 0.3 0.3 0.2 0.230 8
    A43 0 0 0 0.2 0.3 0.3 0.2 0.307 7
    注: Ai为准则层, Aij为指标层, RR为直觉模糊度, Wij为权重, A1为控球能力, A2为配合默契度, A3为历史记录, A4为球策略, A11为我方控球时间, A12为敌方控球时间, A13为我方控球度, A14为敌方控球度, A15为球周围人数, A21为传球状态, A22为补漏状态, A23为团队密集度, A24为防守状态, A31为历史比分, A32为传球成功率, A33为前后场时间, A34为威胁次数, A41为球坐标, A42为球速度, A43为球门方向。
    下载: 导出CSV

    表  2  直觉模糊度量值库

    BT BR GD MD BD WR WT
    0.0 0.0 0.0 0.0 0.0 0.5 0.5
    0.0 0.0 0.0 0.0 0.1 0.4 0.5
    0.0 0.0 0.0 0.0 0.2 0.3 0.5
    0.5 0.4 0.0 0.1 0.0 0.0 0.0
    0.5 0.4 0.1 0.0 0.0 0.0 0.0
    0.5 0.5 0.0 0.0 0.0 0.0 0.0
    下载: 导出CSV

    表  3  指标层对准则层的判断矩阵

    指标 控球能力 配合默契度 历史记录 球策略 w
    控球能力 1 6/5 6/5 6/4 0.3
    配合默契度 5/6 1 1 5/4 0.25
    历史记录 5/6 1 1 5/4 0.25
    球策略 4/6 4/5 4/5 1 0.2
    下载: 导出CSV

    表  4  防守反击对赛场态势的影响

    Ai Aij RR
    BT BR GD MD BD WR WT
    A1 A11 0.2 0.3 0.1 0.1 0.3 0 0
    A12 0 0.1 0 0.1 0.3 0.3 0.2
    A13 0.2 0.4 0.2 0.2 0 0 0
    A14 0 0 0 0.1 0.2 0.4 0.3
    A15 0.3 0.3 0.2 0.2 0 0 0
    A2 A21 0.3 0.2 0.3 0.2 0 0 0
    A22 0.2 0.3 0.2 0.3 0 0 0
    A23 0.1 0.2 0.3 0.2 0.2 0 0
    A24 0.2 0.2 0.2 0.3 0.1 0 0
    A3 A31 0.3 0.3 0.2 0.2 0 0 0
    A32 0.4 0.4 0.2 0 0 0 0
    A33 0.1 0.1 0.3 0.3 0.2 0 0
    A34 0.2 0.2 0.2 0.3 0.1 0 0
    A4 A41 0.3 0.3 0.2 0.2 0 0 0
    A42 0.3 0.2 0.3 0.2 0 0 0
    A43 0.2 0.3 0.2 0.3 0 0 0
    下载: 导出CSV

    表  5  1000拍三种态势评估体系效果

    评估体系 评估正确拍数 有效进攻拍数 有效防守拍数 耗时/s
    基于直觉模糊 934 627 352 15.34
    基于隐马尔科夫 525 232 156 15.45
    基于贝叶斯理论 486 257 135 20.00
    下载: 导出CSV

    表  6  前500拍三种态势评估体系效果

    评估体系 评估正确拍数 有效进攻拍数 有效防守拍数
    基于直觉模糊 450 324 166
    基于隐马尔科夫 376 156 107
    基于贝叶斯理论 249 123 69
    下载: 导出CSV

    表  7  后500拍三种态势评估体系效果

    评估体系 评估正确拍数 有效进攻拍数 有效防守拍数
    基于直觉模糊 484 303 186
    基于隐马尔科夫 149 76 49
    基于贝叶斯理论 239 134 66
    下载: 导出CSV
  • [1] 苏禹, 林显富.基于动态运行轨迹的机器人足球策略研究[J].黑龙江大学自然科学学报, 2018, 35(1):116-121 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljdxzrkxxb201801017

    Su Y, Lin X F. Research on robot soccer strategy based on dynamic running path[J]. Journal of Natural Science of Heilongjiang University, 2018, 35(1):116-121(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljdxzrkxxb201801017
    [2] 刘希亮, 陈桂明, 李方溪, 等.基于多传感器信息融合的贝叶斯网络故障诊断方法研究及应用[J].机械科学与技术, 2013, 32(1):91-95 https://journals.nwpu.edu.cn/jxkxyjs/article/id/5425

    Liu X L, Chen G M, Li F X, et al. Fault diagnosis approach of Bayesian networks based on multi-sensor information fusion and application[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(1):91-95(in Chinese) https://journals.nwpu.edu.cn/jxkxyjs/article/id/5425
    [3] 张尔卿, 傅攀, 李威霖.不完备先验知识下的刀具磨损状态评估方法研究[J].机械科学与技术, 2015, 34(3):418-422 doi: 10.13433/j.cnki.1003-8728.2015.0319

    Zhang E Q, Fu P, Li W L. Tool wear condition assessment based on incomplete priori knowledge[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(3):418-422(in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0319
    [4] 杨博帆, 王睿, 王刚, 等.基于判决模糊化的分布式融合探测算法[J].探测与控制学报, 2015, 37(1):45-49 http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201501010

    Yang B F, Wang R, Wang G, et al. Distributed fusion detection algorism bases on fuzzed Decision[J]. Journal of Detection & Control, 2015, 37(1):45-49(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201501010
    [5] 曹荣, 柳在鑫, 伍龙军, 等.基于自主势场法的足球机器人路径规划研究[J].机械科学与技术, 2009, 28(2):230-233 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs200902021

    Cao R, Liu Z X, Wu L J, et al. Path planning of a soccer robot based on autonomous potential field[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(2):230-233(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs200902021
    [6] 王萍, 喻阳俭, 茹锋.足球机器人在多运动状态中的角色建模与Petri网控制策略[J].科学技术与工程, 2019, 19(22):201-207 http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201922029

    Wang P, Yu Y J, Ru F. Role model and petri network control strategy of soccer robot with Multi-motion States[J]. Science Technology and Engineering, 2019, 19(22):201-207(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201922029
    [7] Dammak F, Baccour L, Alimi A M. A comparative analysis for multi-attribute decision making methods: TOPSIS, AHP, VIKOR using intuitionistic fuzzy sets[C]//2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Istanbul: IEEE, 2015: 1-5
    [8] Chen S M, Chiou C H. Multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(6):1905-1916 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=faa87fc5c850d7e328a0b5645814846e
    [9] 雷英杰, 王宝树, 王毅.基于直觉模糊决策的战场态势评估方法[J].电子学报, 2006, 34(12):2175-2179 http://d.old.wanfangdata.com.cn/Periodical/dianzixb200612011

    Lei Y J, Wang B S, Wang Y. Techniques for battlefield situation assessment based on intuitionistic fuzzy decision[J]. Acta Electronica Sinica, 2006, 34(12):2175-2179(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dianzixb200612011
    [10] 张伟.基于模糊融合的足球机器人避障行为设计[J].电子测试, 2019(8):33-34, 11 http://d.old.wanfangdata.com.cn/Periodical/dzcs201908012

    Zhang W. Obstacle avoidance behavior design of soccer robot based on fuzzy fusion[J]. Electronic Test, 2019(8):33-34, 11(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dzcs201908012
    [11] 茹锋, 喻阳俭, 王萍, 等.基于多优化快速扩展随机树算法的足球机器人路径规划[J].科学技术与工程, 2019, 19(28):189-195 http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201928028

    Ru F, Yu Y J, Wang P, et al. Path planning based on multi-optimization design RRT algorithm for soccer robot[J]. Science Technology and Engineering, 2019, 19(28):189-195(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201928028
    [12] 史豪斌, 徐又丰, 严建峰, 等.SimuroSot决策系统中的态势评估算法[J].计算机工程, 2007, 33(19):29-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgc200719010

    Shi H B, Xu Y F, Yan J F, et al. Situation evaluation algorithm in SimuroSot decision support system[J]. Computer Engineering, 2007, 33(19):29-32(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgc200719010
    [13] 陈德江, 王君.基于直觉模糊集的防空作战目标威胁评估[J].探测与控制学报, 2019, 41(4):46-51 http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201904010

    Chen D J, Wang J. Air defense target threat assessment based on intuitionistic fuzzy sets[J]. Journal of Detection & Control, 2019, 41(4):46-51(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201904010
    [14] 杨进帅, 王毅, 李进, 等.求解直觉模糊多目标规划的改进遗传算法[J].探测与控制学报2018, 39(5):96-101 http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201705019

    Yang J S, Wang Y, Li J, et al. Solving intuitionistic fuzzy multi-objection programming by improved genetic algorithm[J]. Journal of Detection & Control, 2018, 39(5):96-101(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201705019
    [15] 张凯, 熊家军, 李凡, 等.基于意图推断的高超声速滑翔目标贝叶斯轨迹预测[J].宇航学报, 2018, 39(11):1258-1265 http://d.old.wanfangdata.com.cn/Periodical/yhxb201811008

    Zhang K, Xiong J J, Li F, et al. Bayesian trajectory prediction for a hypersonic gliding reentry Vehicle Based on Intent Inference[J]. Journal of Astronautics, 2018, 39(11):1258-1265(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yhxb201811008
    [16] 王瑞雪, 司书宾, 张守华.基于贝叶斯网络的模糊语言多属性决策模型[J].机械科学与技术, 2012, 31(3):417-423 https://journals.nwpu.edu.cn/jxkxyjs/article/id/5779

    Wang R X, Si S B, Zhang S H. Fuzzy-language multiple-attribute decision-making model based on Bayesian network[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(3):417-423(in Chinese) https://journals.nwpu.edu.cn/jxkxyjs/article/id/5779
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  89
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 刊出日期:  2020-05-05

目录

    /

    返回文章
    返回