留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四位双通电热气动微阀的工作特性分析

刘云 龙威 魏先杰 赵娜

刘云, 龙威, 魏先杰, 赵娜. 四位双通电热气动微阀的工作特性分析[J]. 机械科学与技术, 2021, 40(3): 403-409. doi: 10.13433/j.cnki.1003-8728.20200031
引用本文: 刘云, 龙威, 魏先杰, 赵娜. 四位双通电热气动微阀的工作特性分析[J]. 机械科学与技术, 2021, 40(3): 403-409. doi: 10.13433/j.cnki.1003-8728.20200031
LIU Yun, LONG Wei, WEI Xianjie, ZHAO Na. Analysis on Operating Characteristics of Four-position Double-pass Electrothermal Pneumatic Microvalve[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 403-409. doi: 10.13433/j.cnki.1003-8728.20200031
Citation: LIU Yun, LONG Wei, WEI Xianjie, ZHAO Na. Analysis on Operating Characteristics of Four-position Double-pass Electrothermal Pneumatic Microvalve[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 403-409. doi: 10.13433/j.cnki.1003-8728.20200031

四位双通电热气动微阀的工作特性分析

doi: 10.13433/j.cnki.1003-8728.20200031
基金项目: 

国家自然科学基金项目 11502102

云南省科技厅面上项目 2018FB096

详细信息
    作者简介:

    刘云(1995-), 硕士研究生, 研究方向为流体传动与控制, 948690571@qq.com

    通讯作者:

    龙威, 副教授, 硕士生导师, daifor@163.com

  • 中图分类号: TG156

Analysis on Operating Characteristics of Four-position Double-pass Electrothermal Pneumatic Microvalve

  • 摘要: 本研究提出的四位双通电热气动微阀是在传统气动微阀的基础上,对阀通道结构和控制方法进行创新设计,采用封闭气腔内设置电热片的方式,通过控制电热片的通电与否和电流强度,实现了4个工作位双向导通的控制作用,并根据需要调整压力的阈值; 运用COMSOL软件对电热气动微阀的传热过程、流场特性和阀膜片的受力情况进行数值分析,通过对气腔内部的电流-压力特性、膜片的应力应变特征、流体通道内的速度和压力分布的分析,从而对电热气动微阀的各方面进行分析。研究发现:四位双通电热气动微阀内部膜片的应力主要集中在膜片与气室接触位置和阻流障碍位置;流体通道内的速度和压力变化主要集中在阻流障碍与膜片之间的通道内;当电热器通相应的电流强度时,温度在1 s内可以达到85 ℃左右。
  • 图  1  电热微阀结构示意图

    图  2  微阀4个工作位

    图  3  流速网格无关性验证图

    图  4  电热器温升规律

    图  5  电热器工作时气室内压力变化曲线

    图  6  电热器工作时膜片位移图

    图  7  微阀4个工作位阀膜等效应力分布图

    图  8  阀膜最大应力曲线图

    图  9  微阀4个工作位流体通道压力分布图

    图  10  微阀4个工作位的流体流速分布图

    图  11  微阀4个工作位流速变化曲线图

    表  1  电热微阀尺寸表 μm

    h1 h2 h3 h4 h5 d1 d2 d3 d4
    1 000 100 500 1 200 300 2 000 2 000 200 300
    下载: 导出CSV

    表  2  四位双通电热微阀功能图

    电热片 向右流通 向右不通 向左流通 向左不通
    1 - + - +
    2 - - + +
    注: “+”表示不导电,“-”表示导电。
    下载: 导出CSV
  • [1] 刘丽双. 双金属热致动器的设计与仿真[J]. 中北大学学报, 2008, 29(6): 554-557 https://www.cnki.com.cn/Article/CJFDTOTAL-HBGG200806017.htm

    LIU L S. Design and simulation of bimetallic thermal actuation[J]. Journal of North University of China, 2008, 29(6): 554-557 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBGG200806017.htm
    [2] 耿照新, 崔大付, 马小玲. 基于MEMS技术的SU-8胶被动微阀片的设计与研制[J]. 纳米技术与精密工程, 2008, 6(5): 343-348 https://www.cnki.com.cn/Article/CJFDTOTAL-NMJM200805008.htm

    GENG Z X, CUI D F, MA X L. Design and development of SU-8 check microvalve based on MEMS technique[J]. Nanotechnology and Precision Engineering, 2008, 6(5): 343-348 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMJM200805008.htm
    [3] 杨博淙, 王伯雄, 秦垚, 等. 热气致动双稳态微型阀响应时间的仿真及实验[J]. 清华大学学报, 2011, 51(6): 840-845 https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201106024.htm

    YANG B C, WANG B X, QIN Y, et al. Response time of a thermopneumatically--actuated bistable microvalve[J]. Journal of Tsinghua University, 2011, 51(6): 840-845 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201106024.htm
    [4] 曹剑, 唐建忠, 朱笑丛. 热致动微型阀膜片的仿真分析及工艺设计[J]. 液压与气动, 2014(1): 13-17 https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201401005.htm

    CAO J, TANG J Z, ZHU X C. Simulation analysis and process design of membrane in thermally actuated micro-valve[J]. Chinese Hydraulics & Pneumatics, 2014(1): 13-17 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201401005.htm
    [5] 牛志强, 贾晓宇, 李建华, 等. 基于玻璃-PDMS复合结构的微型毛细管被动阀[J]. 功能材料与器件学报, 2005, 11(3): 338-342 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ200503015.htm

    NIU Z Q, JIA X Y, LI J H, et al. A simple-fabricated passive microvalve using rapid prototyping of glass and PDMS(polydimethylsiloxane)[J]. Journal of Functional Materials and Devices, 2005, 11(3): 338-342 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ200503015.htm
    [6] AFRASIAB H, MOVAHHEDY M R, ASSEMPOUR A. Finite element and analytical fluid-structure interaction analysis of the pneumatically actuated diaphragm microvalves[J]. Acta Mechanica, 2011, 222(1-2): 175-192 doi: 10.1007/s00707-011-0508-9
    [7] 关艳霞, 凌宇. PDMS气动微泵的研制[J]. 仪表技术与传感器, 2012(11): 151-152 https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201211052.htm

    GUAN Y X, LING Y. Development of a PDMS pneumatic peristaltic micropump[J]. Instrument Technique and Sensor, 2012(11): 151-152 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201211052.htm
    [8] AEINEHVAND M M, IBRAHIM F, AL-FAQHERI W, et al. Recent advances in the development of micropumps, microvalves and micromixers and the integration of carbon electrodes on centrifugal microfluidic platforms[J]. International Journal of Nanotechnology, 2018, 15(1-3): 53-68
    [9] POURMAND A, SHAEGH S A M, GHAVIFEKR H B, et al. Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump[J]. Sensors and; Ctuators B: Chemical, 2018, 262: 625-636 doi: 10.1016/j.snb.2017.12.132
    [10] ZHANG W H, LIN S C, WANG C M, et al. PMMA/PDMS valves and pumps for disposable microfluidics[J]. Lab on a Chip, 2009, 9(21): 3088-3094 doi: 10.1039/b907254c
    [11] BALL C S, RENZI R F, PRIYE A, et al. A simple check valve for microfluidic point of care diagnostics[J]. Lab on a Chip, 2016, 16(22): 4436-4444 doi: 10.1039/C6LC01104G
    [12] WANG D Y, BA D C, HAO M, et al. A numerical insight into elastomer normally closed micro valve actuation with cohesive interfacial cracking modelling[J]. Applied Surface Science, 2018, 440(1): 84-90
    [13] NI J H, HUANG F L, WANG B, et al. A planar PDMS micropump using in-contact minimized-leakage check valves[J]. Journal of Micromechanics and Microengineering, 2010, 20(9): 095033 doi: 10.1088/0960-1317/20/9/095033
    [14] 吴元庆, 姚素英. 热膨胀驱动型微阀的设计与制备[J]. 传感器与微系统, 2012, 31(10): 100-102 https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201210031.htm

    WU Y Q, YAO S Y. Design and preparation of micro-valve driven by thermal expansion[J]. Transducer and Microsystem Technologies, 2012, 31(10): 100-102 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201210031.htm
    [15] LIU X L, LI S J, BAO G. Numerical simulation on the response characteristics of a pneumatic microactuator for Microfluidic chips[J]. Journal of Laboratory Automation, 2016, 21(3): 412-422 doi: 10.1177/2211068215584769
    [16] 龙威, 杨绍华, 巨少华, 等. 薄膜式气动微阀的流动特性研究[J]. 昆明理工大学学报, 2017, 42(5): 39-45 https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201705007.htm

    LONG W, YANG S H, JU S H, et al. A Study on flow characteristics of pneumatic microvalves in membrane form[J]. Journal of Kunming University of Science and Technology, 2017, 42(5): 39-45 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201705007.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  21
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回