留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5083铝合金带吻接FSW接头疲劳强度分析

米鹏 王瑞杰 杨庆鹤

米鹏, 王瑞杰, 杨庆鹤. 5083铝合金带吻接FSW接头疲劳强度分析[J]. 机械科学与技术, 2021, 40(3): 463-469. doi: 10.13433/j.cnki.1003-8728.20200030
引用本文: 米鹏, 王瑞杰, 杨庆鹤. 5083铝合金带吻接FSW接头疲劳强度分析[J]. 机械科学与技术, 2021, 40(3): 463-469. doi: 10.13433/j.cnki.1003-8728.20200030
MI Peng, WANG Ruijie, YANG Qinghe. Influence of Defect Depth of Kissing Bond on Fatigue Strength of AA5083 FSW Butt Joints[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 463-469. doi: 10.13433/j.cnki.1003-8728.20200030
Citation: MI Peng, WANG Ruijie, YANG Qinghe. Influence of Defect Depth of Kissing Bond on Fatigue Strength of AA5083 FSW Butt Joints[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 463-469. doi: 10.13433/j.cnki.1003-8728.20200030

5083铝合金带吻接FSW接头疲劳强度分析

doi: 10.13433/j.cnki.1003-8728.20200030
基金项目: 

国家自然科学基金项目 51065012

详细信息
    作者简介:

    米鹏(1993-), 硕士, 研究方向为机械结构疲劳强度, 18090016609@163.com

    通讯作者:

    王瑞杰, 副教授, 硕士生导师, wrj@kust.edu.cn

  • 中图分类号: TG407

Influence of Defect Depth of Kissing Bond on Fatigue Strength of AA5083 FSW Butt Joints

  • 摘要: 针对具有吻接缺陷的5083铝合金板搅拌摩擦焊(FSW)对接接头试件,探索了吻接缺陷对搅拌摩擦焊对接接头疲劳强度的影响。使用维氏显微硬度仪测量了试件接头焊缝横截面硬度分布,测试结果显示,硬度值分布大致呈W趋势。采用MTS809疲劳测试机对试件进行疲劳测试,得到了不同吻接深度拉伸式样的名义应力-寿命关系。对疲劳断口进行SEM扫描并测量了接头吻接缺陷深度,发现疲劳裂纹均起源于吻接缺陷区域。通过有限元软件ABAQUS对不同吻接深度试件进行了应力应变分析,分别采用缺口应力法和局部应力应变法对试件进行了疲劳寿命预测。预测结果表明,缺口应力法在低周疲劳预测时效果较好。
  • 图  1  试件尺寸

    图  2  显微硬度测试

    图  3  焊缝表面轻微凹陷处

    图  4  名义应力-寿命关系曲线

    图  5  Fb002试件疲劳断口形貌

    图  6  Fb015试件疲劳断口电镜扫描图

    图  7  Fb012试件疲劳断口电镜扫描图

    图  8  0.5 mm吻接深度试件有限元模型

    图  9  Fb007试件不同分析步的最大主力分布

    图  10  不同吻接深度试件在最大载荷196 MPa变形模拟

    图  11  铝合金疲劳曲线

    图  12  缺口应力法预测疲劳寿命

    图  13  应力-应变曲线

    图  14  局部应力应变法预测疲劳寿命

    表  1  5083铝合金主要化学成分 %

    w(Si) w(Cu) w(Mg) w(Zn) w(Mn) w(Ti) w(Cr) w(Fe)
    ≤0.4 ≤0.1 4.0~4.9 ≤0.25 0.4~1.0 ≤0.15 0.05~0.25 ≤0.4
    下载: 导出CSV

    表  2  试件最大载荷、实验寿命及吻接深度

    试件编号 最大载荷/
    MPa
    实验疲劳
    寿命/次
    吻接深度/
    mm
    Fb007 196.078 431 1 771 0.51
    Fb002 176.470 588 3 174 0.49
    Fb016 149.019 608 4 758 0.51
    Fb009 129.411 765 7 687 0.49
    Fb015 123.529 412 5 036 0.51
    Fb005 117.647 059 7 514 0.51
    Fb021 101.960 784 8 948 0.48
    Fb022 94.117 647 1 46 542 0.49
    Fb013 90.196 078 4 52 431 0.52
    Fb027 87.254 902 59 606 0.51
    Fb023 205.882 353 4 196 0.31
    Fb008 168.627 451 3 039 0.55
    Fb017 143.137 255 5 200 0.55
    Fb018 133.333 333 11 527 0.45
    Fb019 113.725 490 5 049 0.71
    Fb020 109.803 922 7 086 0.65
    下载: 导出CSV

    表  3  5083铝合金疲劳参数[17]

    疲劳强度
    系数σ′f
    疲劳延性
    系数ε′f
    疲劳强度
    指数b
    疲劳延性
    指数c
    711 MPa 0.405 -0.122 -0.692
    下载: 导出CSV
  • [1] UTHAYAKUMAR M, BALASUBRAMANIAN V, RANI A M A, et al. Effects of welding on the fatigue behaviour of commercial aluminum AA-1100 joints[J]. IOP Conference Series: Materials Science and Engineering, 2018, 346: 012065 doi: 10.1088/1757-899X/346/1/012065
    [2] 佟建华, 张坤, 林松, 等. 搅拌摩擦焊和熔化极气体保护焊6082铝合金疲劳性能分析[J]. 焊接学报, 2015, 36(7): 105-108 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201507025.htm

    TONG J H, ZHANG K, LIN S, et al. Comparison of fatigue property of 6082 aluminum alloy joint by friction stir welding and metal inert-gas welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 105-108 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201507025.htm
    [3] 戴启雷, 孟立春, 梁志芳, 等. A6N01-T5合金FSW和MIG焊接头疲劳裂纹扩展行为的对比[J]. 焊接学报, 2015, 36(9): 9-12, 38 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201509003.htm

    DAI Q L, MENG L C, LIANG Z F, et al. Comparison of fatigue crack propagation behavior of friction stir welded and metal inert-gas welded A6N01 joints[J]. Transactions of the China Welding Institution, 2015, 36(9): 9-12, 38 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201509003.htm
    [4] 李继忠, 孙占国, 高崇, 等. 根部未焊透对搅拌摩擦焊接接头力学性能的影响[J]. 电焊机, 2014, 44(4): 18-22 https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201404012.htm

    LI J Z, SUN Z G, GAO C, et al. Influence the lack of penetration on the mechanical properties of friction stir welded joints[J]. Electric Welding Machine, 2014, 44(4): 36-40 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201404012.htm
    [5] SALVATI E, EVERAERTS J, KAGEYAMA K, et al. Transverse fatigue behaviour and residual stress analyses of double sided FSW aluminium alloy joints[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(9): 1980-1990 doi: 10.1111/ffe.13068
    [6] 姬书得, 孟祥晨, 黄永宪, 等. 搅拌头旋转频率对静止轴肩搅拌摩擦焊接头力学性能的影响规律[J]. 焊接学报, 2015, 36(1): 51-54 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201501013.htm

    JI S D, MENG X C, HUANG Y X, et al, Effect of rotational velocity of tool on mechanical properties of stationary shoulder friction stir welding[J]. Transactions of the China Welding Institution, 2015, 36(1): 51-54 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201501013.htm
    [7] OKADA T, MACHIDA S, NAKAMURA T. Corrosion resistance evaluation and effects of prior corrosion and stress on fatigue behavior of friction stir welded AA2024-T3[J]. Corrosion, 2018, 74(2): 169-180 doi: 10.5006/2447
    [8] 张欣盟, 何广忠, 王贝贝, 等. 氧化膜对6082铝合金搅拌摩擦焊接头疲劳性能的影响[J]. 材料研究学报, 2019, 33(4): 299-305 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201904008.htm

    ZHANG X M, HE G Z, WANG B B, et al. Influence of oxide film on fatigue property of friction stir welded 6082 al alloy[J]. Chinese Journal of Materials Research, 2019, 33(4): 299-305 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201904008.htm
    [9] 金玉花, 吴永武, 王希靖, 等. 滚动轧制对铝合金搅拌摩擦焊接头性能的影响[J]. 焊接学报, 2019, 40(4): 50-54 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201904009.htm

    JIN Y H, WU Y W, WANG X J, et al, Effect of rolling on friction stir welded joints of aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(4): 50-54 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201904009.htm
    [10] 邓彩艳, 高仁, 龚宝明, 等. 7050铝合金搅拌摩擦焊接头超高周疲劳性能[J]. 焊接学报, 2018, 39(11): 114-118 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201811023.htm

    DENG C Y, GAO R, GONG B M, et al. Research on ultra-high-cycle fatigue properties of 7050 aluminum alloy FSW welded joints[J]. Transactions of the China Welding Institution, 2018, 39(11): 114-118 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201811023.htm
    [11] 乔柯, 王快社, 王文, 等. 搅拌摩擦焊接AZ31镁合金低周疲劳性能[J]. 稀有金属材料与工程, 2019, 48(3): 788-796 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201903014.htm

    QIAO K, WANG K S, WANG W, et al. Low-cycle fatigue properties of friction stir welding joint of AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2019, 48(3): 788-796 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201903014.htm
    [12] 姚宇荃, 王泓, 乙晓伟, 等. 搅拌摩擦焊2124-T851铝合金超低周疲劳特性[J]. 机械科学与技术, 2017, 36(2): 303-307 doi: 10.13433/j.cnki.1003-8728.2017.0224

    YAO Y Q, WANG H, YI X W, et al, Extremely low cycle fatigue properties of 2124-T851 aluminum alloy fabricated by friction stir welding[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 303-307 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0224
    [13] DI S S, YANG X Q, LUAN G H, et al. Comparative study on fatigue properties between AA2024-T4 friction stir welds and base materials[J]. Materials Science and Engineering: A, 2006, 435-436: 389-395 doi: 10.1016/j.msea.2006.07.009
    [14] DICKERSON T L, PRZYDATEK J. Fatigue of friction stir welds in aluminium alloys that contain root flaws[J]. International Journal of Fatigue, 2003, 25(12): 1399-1409 doi: 10.1016/S0142-1123(03)00060-4
    [15] 杨新岐, 吴铁, 张家龙, 等. 厚板铝合金FSW和MIG焊接接头疲劳性能[J]. 焊接学报, 2012, 33(5): 5-8 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201205003.htm

    YANG X Q, WU T, ZHANG J L, et al. Fatigue properties for FSW and MIG welded joints of thickness plate aluminum alloy[J]. Transactions of the China Welding Institution, 2012, 33(5): 5-8 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201205003.htm
    [16] FRICKE W. ⅡW Recommendations for the fatigue assessment of welded structures by notch stress analysis: ⅡW-2006-09[M]. Cambridge: Woodheed Publ, 2012
    [17] HIGASHIDA Y, BURK J D, LAWRENCE F V. Strain-Controlled Fatigue Behavior of ASTM A36 and A514 Grade F Steels and 5083-0 Aluminum Weld Materials. Welding Research Supplement (AWS), (1978), 344-334 http://www.researchgate.net/publication/321887193_STRAIN-CONTROLLED_FATIGUE_BEHAVIOR_OF_ASTM_A36_AND_A514_GRADE_F_STEELS_AND_5083-0_ALUMINUM_WELD_MATERIALS
    [18] HOBBACHER A F. Recommendations for fatigue design of welded joints and components[M]//ⅡW Collection. Switzerland: Springer International Publishing, 2016
    [19] RAO D, HUBER K, HEERENS J, et al. Asymmetric mechanical properties and tensile behaviour prediction of aluminium alloy 5083 friction stir welding joints[J]. Materials Science and Engineering: A, 2013, 565: 44-50 doi: 10.1016/j.msea.2012.12.014
    [20] SMITH K N, WATSON P, TOPPER T H. A stress-train function for the fatigue of metals[J]. Journal of Materials, 1970, 5(4): 767-78 http://ci.nii.ac.jp/naid/10009516116
    [21] LASSEN T, RÉCHO N. Fatigue life analysis of welded structures[M]. ISTE Ltd, 2006
    [22] MANSON S S. Fatigue: A complex subject-Some simple approximations[J]. Experimental Mechanics, 1965, 5(4): 193-226 doi: 10.1007/BF02321056
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  82
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-27
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回