留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微滴喷射工艺参数与液滴形态关系的数值模拟

高翔宇 杨伟东 王媛媛 屠熹远 张争艳

高翔宇, 杨伟东, 王媛媛, 屠熹远, 张争艳. 微滴喷射工艺参数与液滴形态关系的数值模拟[J]. 机械科学与技术, 2021, 40(3): 475-480. doi: 10.13433/j.cnki.1003-8728.20200011
引用本文: 高翔宇, 杨伟东, 王媛媛, 屠熹远, 张争艳. 微滴喷射工艺参数与液滴形态关系的数值模拟[J]. 机械科学与技术, 2021, 40(3): 475-480. doi: 10.13433/j.cnki.1003-8728.20200011
GAO Xiangyu, YANG Weidong, WANG Yuanyuan, TU Xiyuan, ZHANG Zhengyan. Numerically Simulating Relationship of Process Parameters Between Droplet Ejection and Droplet Morphology[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 475-480. doi: 10.13433/j.cnki.1003-8728.20200011
Citation: GAO Xiangyu, YANG Weidong, WANG Yuanyuan, TU Xiyuan, ZHANG Zhengyan. Numerically Simulating Relationship of Process Parameters Between Droplet Ejection and Droplet Morphology[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 475-480. doi: 10.13433/j.cnki.1003-8728.20200011

微滴喷射工艺参数与液滴形态关系的数值模拟

doi: 10.13433/j.cnki.1003-8728.20200011
基金项目: 

国家自然科学基金委青年基金项目 61802108

河北省自然科学基金专项 E2017202296

河北省自然科学基金项目 E201602297

详细信息
    作者简介:

    高翔宇(1995-), 硕士研究生, 研究方向为增材制造, xaingyu9508@163.com

    通讯作者:

    王媛媛, 助理研究员, 2012047@hebut.edu.cn

  • 中图分类号: TP391.9

Numerically Simulating Relationship of Process Parameters Between Droplet Ejection and Droplet Morphology

  • 摘要: 以微滴喷射的增材制造技术为研究对象,采用守恒水平集方法建立了液滴喷射过程的数值仿真的物理数学模型。通过仿真实验分析了液滴喷射的流场分布,采用曲面响应法的中心复合设计建立了拟合模型并进行了修正,提出了液滴喷射过中液滴成球距离和断裂高度分别与入口处压强脉冲的幅值与脉宽的拟合关系式。模拟结果表明:在液滴喷射过程中喷嘴入处的压强脉冲的幅值与脉宽和液滴形态之间有密切的关系,压强幅值与脉宽之间存在一个临界关系,当不满足这个关系时液滴无法从喷嘴口喷出,只有当压强幅值与脉宽满足这个临界条件时,液滴才能够克服喷嘴口处的表面张力顺利喷出;在满足喷射条件的情况下压强幅值与脉宽时间越大,喷出的液滴成球距离越远;压强幅值与脉宽时间越小,喷出的液滴成球距离越近。
  • 图  1  仿真模型建立

    图  2  不同压强液滴喷射过程流场分布图

    图  3  标准化Pareto图(响应为l, α=0.05)

    图  4  修正后的标准化Pareto图(响应为l, α=0.05)

    图  5  液滴成球距离与压强、脉宽的等值线图

    图  6  液滴滴落实验结果与仿真对比

    表  1  呋喃数脂物性参数

    参数名称 数值
    表面张力 4.32×10-2 N/m
    动力黏度 9.757×10-3 Pa·s
    接触角 32°
    密度 1.120×103 kg/m3
    下载: 导出CSV

    表  2  模型汇总表

    参数 S R-sq R-sq(调整) R-sq(预测)
    L 14.657 8 99.67% 99.62% 99.53%
    l 5.803 87 99.32% 99.16% 98.80%
    下载: 导出CSV

    表  3  成球距离预测

    组号 脉宽T/μs 幅值A/kPa 仿真值/mm 拟合值 拟合值标准误差 95%置信区间 95%预测区间
    1 12 50 394 414.558 5.884 06 (402.144, 426.972) (381.699, 447.417)
    2 12 36 203 203.615 5.773 34 (191.434, 215.795) (170.844, 236.386)
    3 17 42 614 612.169 6.574 59 (598.298, 626.041) (578.733, 645.606)
    4 10 30 无法喷出 < 0
    下载: 导出CSV

    表  4  断裂高度预测

    组号 脉宽T/μs 幅值A/kPa 仿真值/mm 拟合值 拟合值标准误差 95%置信区间 95%预测区间
    1 12 50 212 213.285 2.392 31 (208.237, 218.332) (199.925, 226.644)
    2 12 36 161 157.095 2.347 29 (152.143, 162.048) (143.771, 170.419)
    3 17 42 253 274.855 2.673 06 (269.216, 280.495) (261.261, 288.450)
    4 10 30 无法喷出 < 0
    下载: 导出CSV
  • [1] Derby B. Additive manufacture of ceramics components by inkjet printing[J]. Engineering, 2015, 1(1): 113-123 doi: 10.15302/J-ENG-2015014
    [2] Fromm J E. Numerical calculation of the fluid dynamics of drop-on-demand jets[J]. IBM Journal of Research and Development, 1984, 28(3): 322-333 doi: 10.1147/rd.283.0322
    [3] Derby B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution[J]. Annual Review of Materials Research, 2010, 40: 395-414 doi: 10.1146/annurev-matsci-070909-104502
    [4] Reis N, Derby B. Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation[J]. MRS Online Proceedings Library Archive, 2000, 625: 117-122 doi: 10.1557/PROC-625-117
    [5] Reis N, Ainsley C, Derby B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors[J]. Journal of Applied Physics, 2005, 97(9): 094903 doi: 10.1063/1.1888026
    [6] Duineveld P C, de Kok M M, Buechel M, et al. Ink-jet printing of polymer light-emitting devices[C]//Proceedings Volume 4464, Organic Light-Emitting Materials and Devices V. San Diego, CA, United States: SPIE, 2002: 59-67
    [7] Stow C D, Hadfield M G. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 373(1755): 419-441 http://rspa.royalsocietypublishing.org/content/373/1755/419.abstract
    [8] Carneiro J, Campos J B L M, Miranda J M. High viscosity polymeric fluid droplet formation in a flow focusing microfluidic device-Experimental and numerical study[J]. Chemical Engineering Science, 2019, 195: 442-454 doi: 10.1016/j.ces.2018.09.042
    [9] Wu L Y, Liu X D, Zhao Y J, et al. Role of local geometry on droplet formation in axisymmetric microfluidics[J]. Chemical Engineering Science, 2017, 163: 56-67 doi: 10.1016/j.ces.2017.01.022
    [10] Yu W, Liu X D, Zhao Y J, et al. Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles[J]. Chemical Engineering Science, 2019, 203: 259-284 doi: 10.1016/j.ces.2019.03.082
    [11] 齐乐华, 罗俊, 李莉, 等. 均匀液滴喷射过程仿真与试验研究[J]. 机械工程学报, 2008, 44(12): 86-92 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200812016.htm

    Qi L H, Luo J, Li L, et al. Simulation and experiment research of the uniform drolet spray process[J]. Chinese Journal of Mechanical Engineering, 2008, 44(12): 86-92 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200812016.htm
    [12] 杨敏官, 闫龙龙, 王育立, 等. 喷嘴入口条件对微液滴生成的影响[J]. 排灌机械工程学报, 2015, 33(3): 226-232 https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201503009.htm

    Yang M G, Yan L L, Wang Y L, et al. Effects of nozzle inlet conditions on micro-droplet formation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(3): 226-232 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201503009.htm
    [13] 刘赵淼, 徐元迪, 逄燕, 任等. 压电式微滴按需喷射的过程控制和规律[J]. 力学学报, 2019, 51(4): 1031-1042

    Liu Z M, Xu Y D, Pang Y, et al. Study of process control on piezoelectric drop-on-demand ejection[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1031-1042 (in Chinese)
    [14] 薛光怀, 贺永, 傅建中, 等. 压电式喷头的微滴喷射行为及其影响因素[J]. 光学精密工程, 2014, 22(8): 2166-2172 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408026.htm

    Xue G H, He Y, Fu J Z, et al. Droplet jetting of piezoelectric printhead and corresponding effect factors[J]. Optics and Precision Engineering, 2014, 22(8): 2166-2172 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408026.htm
    [15] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49 doi: 10.1016/0021-9991(88)90002-2
    [16] Olsson E, Kreiss G. A conservative level set method for two phase flow[J]. Journal of Computational Physics, 2005, 210(1): 225-246 doi: 10.1016/j.jcp.2005.04.007
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  112
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回