留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种实时轮廓误差估算方法及其预补偿仿真

卢浩 管声启 雷鸣

卢浩,管声启,雷鸣. 一种实时轮廓误差估算方法及其预补偿仿真[J]. 机械科学与技术,2020,39(10):1563-1567 doi: 10.13433/j.cnki.1003-8728.20190308
引用本文: 卢浩,管声启,雷鸣. 一种实时轮廓误差估算方法及其预补偿仿真[J]. 机械科学与技术,2020,39(10):1563-1567 doi: 10.13433/j.cnki.1003-8728.20190308
Lu Hao, Guan Shengqi, Lei Ming. A Real-time Contour Error Estimation Method and Its Pre-compensation Simulation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1563-1567. doi: 10.13433/j.cnki.1003-8728.20190308
Citation: Lu Hao, Guan Shengqi, Lei Ming. A Real-time Contour Error Estimation Method and Its Pre-compensation Simulation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1563-1567. doi: 10.13433/j.cnki.1003-8728.20190308

一种实时轮廓误差估算方法及其预补偿仿真

doi: 10.13433/j.cnki.1003-8728.20190308
基金项目: 陕西省教育厅专项科研计划项目(16JK1337)资助
详细信息
    作者简介:

    卢浩(1996−),硕士研究生,研究方向为数控机床,765024503@qq.com

    通讯作者:

    管声启,教授,硕士生导师,博士,sina1300841@163.com

  • 中图分类号: TP301.6

A Real-time Contour Error Estimation Method and Its Pre-compensation Simulation

  • 摘要: 针对诸多已有的轮廓误差估算方法模型复杂,计算量大,难以进行实时估算并补偿的缺点,提出了一种基于圆形近似和坐标变换的轮廓误差估算方法。主要是通过两次目标坐标系的变换来简化计算过程,减小计算量,能够应用于实时估算轮廓误差的环境。为验证此算法的有效性,在Simulink环境下进行轮廓误差的预补偿仿真。仿真结果显示,此算法可以实时估算并补偿轮廓误差,并且其估算精度高,补偿过程平稳,能够很大程度上提高数控机床的加工精度。
  • 图  1  坐标变换一次估计轮廓误差图

    图  2  坐标变换二次估计轮廓误差图

    图  3  刀具路径图

    图  4  指令轮廓与实际轮廓对比图

    图  5  刀具轨迹图

    图  6  指令轮廓与实际轮廓对照图

    图  7  补偿前后轮廓误差对比图

  • [1] 杨吉祥. 五轴数控机床的运动控制建模及精度提高方法研究[D]. 武汉: 华中科技大学, 2015

    Yang J X. Five-axis motion control modeling and accuracy improvement study[D]. Wuhan: Huazhong University of Science and Technology, 2015 (in Chinese)
    [2] 郭慧, 林大钧. 基于微粒群算法的复杂曲面轮廓度误差计算[J]. 华东大学学报, 2008, 34(3): 274-277, 281

    Guo H, Lin D J. Profile error computation of complicated surface based on particle swarm optimization[J]. Journal of Donghua University, 2008, 34(3): 274-277, 281 (in Chinese
    [3] 侯宇, 张竞, 崔晨阳. 复杂线轮廓度误差坐标测量的数据处理方法[J]. 计量学报, 2002, 23(1): 13-16, 20 doi: 10.3321/j.issn:1000-1158.2002.01.004

    Hou Y, Zhang J, Cui C Y. Data processing method of coordinate measurement for complicated curve profile error[J]. Acta Metrologica Sinica, 2002, 23(1): 13-16, 20 (in Chinese doi: 10.3321/j.issn:1000-1158.2002.01.004
    [4] 廖平. 基于粒子群算法和分割逼近法的复杂曲面轮廓度误差计算[J]. 中国机械工程, 2010, 21(2): 201-205

    Liao P. Calculation of complex surface profile errors based on hybrid particle swarm optimization algorithm[J]. China Mechanical Engineering, 2010, 21(2): 201-205 (in Chinese
    [5] Chen S L, Liu H L, Ting S C. Contouring control of biaxial systems based on polar coordinates[J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(3): 329-345 doi: 10.1109/TMECH.2002.802723
    [6] Xi X C, Poo A N, Hong G S. Taylor series expansion error compensation for a bi-axial CNC machine[C]// IEEE International Conference on Systems, Man and Cybernetics. Singapore: IEEE, 2009.
    [7] Chen H R, Cheng M Y, Wu C H, et al. Real time parameter based contour error estimation algorithms for free form contour following[J]. International Journal of Machine Tools and Manufacture, 2016, 102: 1-8 doi: 10.1016/j.ijmachtools.2015.11.009
    [8] Huo F, Xi X C, Poo A N. Effect of servo control frequency on contour errors in a bi-axial CNC machine[C]// International Conference on Mechatronics and Automation. Xi' an: IEEE, 2010.
    [9] Yeh S S, Hsu P L. Estimation of the contouring error vector for the cross-coupled control design[J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(1): 44-51 doi: 10.1109/3516.990886
    [10] Cheng M Y, Lee C C. Motion controller design for contour-following tasks based on real-time contour error estimation[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1686-1695 doi: 10.1109/TIE.2007.894691
    [11] Chen S L, Wu K C. Contouring control of smooth paths for multiaxis motion systems based on equivalent errors[J]. IEEE Transactions on Control Systems Technology, 2007, 15(6): 1151-1158 doi: 10.1109/TCST.2007.899719
    [12] Wu J H, Xiong Z H, Ding H. Integral design of contour error model and control for biaxial system[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 159-169 doi: 10.1016/j.ijmachtools.2014.11.011
    [13] Lou Y J, Meng H, Yang J Z, et al. Task polar coordinate frame-based contouring control of biaxial systems[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3490-3501 doi: 10.1109/TIE.2013.2282609
    [14] 李文森, 管声启, 郑璐, 等. 一种基于羊角曲线的加工轨迹G2连续光顺方法[J]. 西安工程大学学报, 2019, 33(1): 88-94

    Li W S, Guan S Q, Zheng L, et al. A smoothing method for tool path with G2 continuity based on clothoid curves[J]. Journal of Xi' an Polytechnic University, 2019, 33(1): 88-94 (in Chinese
    [15] Chou T R, Hsieh C H, Chen E. Recovering spectral reflectance based on natural neighbor interpolation with model‐based metameric spectra of extreme points[J]. Color Research and Application, 2019, 44(4): 508-525 doi: 10.1002/col.22366
    [16] Takeuchi I, Katsura S. Interpolation of a clothoid curve based on iterative true-value prediction considering the discretization error[J]. IEEE Transactions on Industrial Informatics, 2018, 14(1): 5156-5166
  • 加载中
图(7)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  57
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回