Structural Design and Simulation of Internal Flow Field Characteristic of Precision Cleaning Vessel for Rocket Engine
-
摘要: 针对目前火箭发动机精清洗的常用方法,提出了一种60 L清洗容器的设计方法,通过容积计算、外形尺寸计算、强度计算、开孔补强计算、支腿校核计算等,完成图纸的绘制。基于Fluent数值模拟方法,对该清洗容器内流场特性进行仿真,得到全过程可视化压力场云图和速度场云图气液相图。同时,使用多项流模型中的VOF模型,捕捉整个容器内气-液相界面。模拟结果表明,数值模拟的预测与设计要求的预期结果比较一致,说明该设计可行性较高。Abstract: A 60 L cleaning vessel for rocket engine was designed according to the common cleaning methods of rocket engine at present. And the volume, shape size, strength, hole reinforcement, leg check, the cleaning vessel werecalculatedto complete the structural design. Furthermore, according to the Fluent numerical analysis, the internal flow fields of the cleaning vessel were simulated. And visualized pressure and velocity field nephograms of the whole process were obtained. At the same time, the VOF model in the multi-flow model was used to simulate the gas-liquid interface in the whole vessel. The simulation results showed that the numerical simulation were in a good agreement with the expected results of the design requirements, which indicated that the design was feasible.
-
Key words:
- structural design /
- flow fields characteristic /
- flow fields /
- gas-liquid phases
-
表 1 网格质量分布
参数值 质量分布 扭曲度 0.4 ~ 0.5 12% 0 0.5 ~ 0.6 36% 24.0% 0.6 ~ 1.0 52% 76.0% -
[1] 刘昌国, 黄永民, 林庆国. 液体火箭发动机用N2O4、甲基肼的清洗剂的研制[J]. 化学推进剂与高分子材料, 2018, 16(2): 53-58Liu C G, Huang Y M, Liu Q G. Development of N2O4 and methyl hydrazine cleaning agents for liquid rocket engine[J]. Chemical Propellants & Polymeric Materials, 2018, 16(2): 53-58 (in Chinese) [2] Dapelo D, Alberini F, Bridgeman J. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion[J]. Water Research, 2015, 85: 497-511 doi: 10.1016/j.watres.2015.08.042 [3] 侯祯, 蔡创雄, 张亚朋, 等. 硝酸盐自然循环回路熔盐空气热交换器风冷通道内流场特性分析[J]. 核技术, 2018, 41(10): 72-78Hou Z, Cai C X, Zhang Y P, et al. Analysis of natural circulation flow field inside the air-cooled channel of molten salt-air heat exchanger in the nitrate natural circulation loop[J]. Nuclear Techniques, 2018, 41(10): 72-78 (in Chinese [4] 张文武, 余志毅, 李泳江, 等. 叶片式气液混输泵全流道内流场特性分析[J]. 机械工程学报, 2019, 55(10): 168-174 doi: 10.3901/JME.2019.10.168Zhang W W, Yu Z Y, Li Y J, et al. Flow characteristics analysis for the whole flow passage of a multiphase rotodynamic pump[J]. Journal of Mechanical Engineering, 2019, 55(10): 168-174 (in Chinese doi: 10.3901/JME.2019.10.168 [5] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB 150.1~150.4-2011 《压力容器》标准释义[S]. 北京: 中国标准出版社, 2012General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China .GB 150.1~150.4-2011 Pressure vessel[S]. Beijing: Standards Press of China, 2012 (in Chinese) [6] 中华人民共和国国家发展和改革委员会.JB/T 4712.2-2007 容器支座 第2部分 腿式支座[S]. 北京: 机械工业出版社, 2008National Development and Reform Commission. JB/T 4712.2-2007 Vessel supports-part 2: leg support[S]. Beijing: China Machine Press, 2018 (in Chinese) [7] 蔡玉强, 李亚丛. 液体蒸发的数值模拟[J]. 华北理工大学学报, 2017, 39(3): 99-104Cai Y Q, Li Y C. Numerical simulation of liquid evaporation[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2017, 39(3): 99-104 (in Chinese [8] 范华, 杨刚, 李冰. 压力旋流喷嘴内流场特性模拟研究[J]. 机电工程, 2018, 35(8): 838-842 doi: 10.3969/j.issn.1001-4551.2018.08.011Fan H, Yang G, Li B. Numerical investigation on inner flow field of pressure swirl nozzle[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(8): 838-842 (in Chinese doi: 10.3969/j.issn.1001-4551.2018.08.011 [9] 黄晓庆, 张旭, 张东亮. 撞击型喷嘴雾化特性的试验研究[J]. 流体机械, 2016, 44(4): 1-3, 16 doi: 10.3969/j.issn.1005-0329.2016.04.001Huang X Q, Zhang X, Zhang D L. Experimental study on the atomization characteristic of impingement-type nozzle[J]. Fluid Machinery, 2016, 44(4): 1-3, 16 (in Chinese doi: 10.3969/j.issn.1005-0329.2016.04.001 [10] 龚杰, 郭春雨, 赵大刚, 等. 导管桨内流场及涡特性DES模拟[J]. 哈尔滨工程大学学报, 2019, 40(8): 1381-1386Gong J, Guo C Y, Zhao D G, et al. Detached eddy simulations of internal flow fields and vortex characteristics of ducted propellers[J]. Journal of Harbin Engineering University, 2019, 40(8): 1381-1386 (in Chinese [11] Bhattacharyya A, Krasilnikov V, Steen S. A CFD-based scaling approach for ducted propellers[J]. Ocean Engineering, 2016, 123: 116-130 doi: 10.1016/j.oceaneng.2016.06.011 [12] Gaggero S, Tani G, Viviani M, et al. A study on the numerical prediction of propellers cavitating tip vortex[J]. Ocean Engineering, 2014, 92: 137-161 doi: 10.1016/j.oceaneng.2014.09.042 [13] 胡健, 王楠, 胡洋. 加速导管和减速导管的性能比较[J]. 北京航空航天大学学报, 2017, 43(2): 240-252Hu J, Wang N, Hu Y. Performance comparison of accelerating duct and decelerating duct[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 240-252 (in Chinese [14] 杨兆铭, 陈建磊, 韩云蕊, 等. 二级旋流气液分离装置设计与流场特性模拟[J]. 过程工程学报, 2018, 18(6): 1198-1209 doi: 10.12034/j.issn.1009-606X.218124Yang Z M, Chen J L, Han Y R, et al. Design of two-stage swirling gas-liquid separator and simulation of flow field characteristics[J]. The Chinese Journal of Process Engineering, 2018, 18(6): 1198-1209 (in Chinese doi: 10.12034/j.issn.1009-606X.218124 [15] Wang A M, Marashdeh Q, Fan L S. ECVT imaging and model analysis of the liquid distribution inside a horizontally installed passive cyclonic gas–liquid separator[J]. Chemical Engineering Science, 2016, 141: 231-239 doi: 10.1016/j.ces.2015.11.004 -