留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的双稳态涡激振动能量收集器的发电性能研究

胡晨阳 吴子英 常宇琛 严涵

胡晨阳,吴子英,常宇琛, 等. 改进的双稳态涡激振动能量收集器的发电性能研究[J]. 机械科学与技术,2020,39(10):1555-1562 doi: 10.13433/j.cnki.1003-8728.20190274
引用本文: 胡晨阳,吴子英,常宇琛, 等. 改进的双稳态涡激振动能量收集器的发电性能研究[J]. 机械科学与技术,2020,39(10):1555-1562 doi: 10.13433/j.cnki.1003-8728.20190274
Hu Chenyang, Wu Ziying, Chang Yuchen, Yan Han. Study on Power Generation Performance of Improved Bistable Vortex-induced Vibration Energy Harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1555-1562. doi: 10.13433/j.cnki.1003-8728.20190274
Citation: Hu Chenyang, Wu Ziying, Chang Yuchen, Yan Han. Study on Power Generation Performance of Improved Bistable Vortex-induced Vibration Energy Harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1555-1562. doi: 10.13433/j.cnki.1003-8728.20190274

改进的双稳态涡激振动能量收集器的发电性能研究

doi: 10.13433/j.cnki.1003-8728.20190274
基金项目: 国家自然科学基金项目(11572243)资助
详细信息
    作者简介:

    胡晨阳(1994−),硕士研究生,研究方向为机械动力学、轴承故障诊断,372524820@qq.com

    通讯作者:

    吴子英,副教授,硕士生导师,ziyingwu@163.com

  • 中图分类号: O322

Study on Power Generation Performance of Improved Bistable Vortex-induced Vibration Energy Harvester

  • 摘要: 随着低功耗传感器的出现,利用流致振动为传感器提供自供电是研究环境监测中的热点。本文将改进的非线性恢复力与涡激振动相结合,提出改进的双稳态涡激振动能量收集器,建立力学模型及控制方程,借助数值仿真得出改进的双稳态涡激振动能量收集器在能量收集方面优于双稳态涡激振动能量收集器,研究并分析了磁距对能量收集系统势能函数及发电功率的影响,借助半功率带宽法,确定了系统在不同磁距下的工作带宽,分析了磁距对发电功率及工作带宽的影响。
  • 图  1  3D实体图及结构简图

    图  2  双稳态力学模型及外部电路

    图  3  文献[13]中的双稳态系统示意图

    图  4  两种系统的势能形状(${\nabla {{U}_2}} = 6\; {\rm{mJ}} ,$ ${\nabla {{U}_1}} = 48\;{\rm{mJ}}$

    图  5  来自不同收集器的振动功率与水流速度以及振动幅度与水流速度的对比

    图  6  两种系统的时域图相图

    图  7  不同磁距下的势能函数图

    图  8  不同磁距下的平均输出功率

    图  9  磁距为17.5 mm时的功率图

    图  10  磁距类型III在一定流速范围内的动态响应图

    图  11  不同磁距的工作带宽

    表  1  方程参数表

    参数及单位数值
    ${M_A},{M_B},{M_C} ,{M_D}$/(A·m−1) $0.995 \times {10^6}$
    ${V_A},{V_B},{V_C}/{\rm{m{m^3} } }$ $500{\text{π} }$
    ${V_O}/{\rm{m{m^3}}}$ $800{\text{π}} $
    $E/{\rm{Pa} }$ $2.1 \times {10^{11}}$
    ${\mu _0}$ $4{\text{π}} \times {10^{ - 7}}$
    ${f_n}/{\rm{Hz}}$ 0.7
    $D/{\rm{mm}}$ 20
    ${d_1}/{\rm{mm}}$ 17.5
    $b/{\rm{mm}}$ 16
    $h/{\rm{mm}}$ 0.61
    ${L_{\rm{f} } }/{\rm{mm}}$ 130
    $r/{\rm{mm}}$ 15
    下载: 导出CSV

    表  2  3种小磁铁间距的大小

    类型磁距/mm
    I $16.7$
    II $17.2$
    III $17.5$
    下载: 导出CSV
  • [1] 练继建, 燕翔, 刘昉. 流致振动能量利用的研究现状与展望[J]. 南水北调与水利科技, 2018, 16(1): 176-188

    Lian J J, Yan X, Liu F. Development and prospect of study on the energy harness of flow-induced motion[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(1): 176-188 (in Chinese
    [2] 蔡云雯, 王树杰, 袁鹏, 等. 潮流能转换装置串列双圆柱下游圆柱流致振动数值模拟[J]. 中国海洋大学学报, 2018, 48(S1): 172-178

    Cai Y W, Wang S J, Yuan P, et al. Numerical simulation of flow-induced vibration of the downstream cylinder in tandem arrangement of tidal energy converter[J]. Periodical of Ocean University of China, 2018, 48(S1): 172-178 (in Chinese
    [3] 杨康, 张宝峰, 殷长山, 等. 串列双圆柱涡激振动数值模拟[J]. 江苏科技大学学报, 2017, 31(5): 567-573

    Yang K, Zhang B F, Yin C S, et al. Numerical investigation on vortex-induced vibration of two tandem circular cylinders[J]. Journal of Jiangsu University of Science and Technology , 2017, 31(5): 567-573 (in Chinese
    [4] 秦伟, 康庄, 孙丽萍, 等. 并列双圆柱涡激振动的经验性模型研究[J]. 海洋工程, 2013, 31(2): 11-18

    Qin W, Kang Z, Sun L P, et al. Research on vortex-induced vibration of two side-by-side cylinders by using an empirical model[J]. The Ocean Engineering, 2013, 31(2): 11-18 (in Chinese
    [5] 梁文洲. 不同排列方式下双圆柱体双自由度涡激振动试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    Liang W Z. The vortex-induced vibration experiment research of two cylinders with two degree freedoms in different arrangements[D]. Harbin: Harbin Engineering University, 2012 (in Chinese).
    [6] 宋汝君, 单小彪, 沈梦龙, 等. 涡激振动型水力复摆式压电俘能器的仿真与实验研究[J]. 振动与冲击, 2017, 36(19): 78-83, 118

    Song R J, Shan X B, Shen M L, et al. Simulations and experiments on a hydrodynamic compound pendulum piezoelectric energy harvester accompanied with vortex-induced vibration[J]. Journal of Vibration and Shock, 2017, 36(19): 78-83, 118 (in Chinese
    [7] 邓杰. 扭转及弯曲压电梁涡激振动俘能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Deng J. Research on vortex-induced vibration energy harvesting using a piezoelectric cantilever beam undergoing torsion and bending-torsion[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese).
    [8] 吕凤池. 基于圆柱涡激振动压电梁水下俘能特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Lv F C. Energy harvesting using a piezoelectric cantilever based on cylindrical vortex-induced vibration in water[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese).
    [9] 燕翔, 练继建, 张军, 等. 一种基于多振子的对振式涡激振动发电装置: 中国, CN104005901B[P]. 2016-02-24.

    Yan X, Lian J J, Zhang J, et al. Multi-vibrator based mutual vibration type vortex-induced vibration generation device: CN, CN104005901B[P]. 2016-02-24 (in Chinese).
    [10] Ferrari M, Ferrari V, Guizzetti M, et al. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters[J]. Sensors and Actuators A: Physical, 2010, 162(2): 425-431 doi: 10.1016/j.sna.2010.05.022
    [11] Harne R L, Wang K W. A review of the recent research on vibration energy harvesting via bistable systems[J]. Smart Materials and Structures, 2013, 22(2): 023001 doi: 10.1088/0964-1726/22/2/023001
    [12] Masuda A, Senda A, Sanada T, et al. Global stabilization of high-energy response for a Duffing-type wideband nonlinear energy harvester via self-excitation and entrainment[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(13): 1598-1612 doi: 10.1177/1045389X13479183
    [13] Huynh B H, Tjahjowidodo T. Experimental chaotic quantification in bistable vortex induced vibration systems[J]. Mechanical Systems and Signal Processing, 2017, 85: 1005-1019 doi: 10.1016/j.ymssp.2016.09.025
    [14] Lan C B, Qin W Y. Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester[J]. Mechanical Systems and Signal Processing, 2017, 85: 71-81 doi: 10.1016/j.ymssp.2016.07.047
    [15] 宋汝君.圆柱型压电俘能器的流激振动及其发电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016 .

    Song R J . Research on the flow-induced vibration and power generation performance of cylindrical piezoelectric energy harvester[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese)
    [16] 周阳, 黄维平. 大直径浮式结构涡激振动的数值模拟[J]. 中国海洋大学学报, 2014, 44(9): 98-103

    Zhou Y, Huang W P. Numerical simulation of the vortex-induced motion of spar platform considering the coupling effect[J]. Journal of Ocean University of China, 2014, 44(9): 98-103 (in Chinese
    [17] 蓝春波, 秦卫阳. 带碰撞双稳态压电俘能系统的俘能特性研究[J]. 物理学报, 2015, 64(21): 210501 doi: 10.7498/aps.64.210501

    Lan C B, Qin W Y. Vibration energy harvesting from a piezo electric bistable system with two symmetric stops[J]. Acta Physics Sinica, 2015, 64(21): 210501 (in Chinese doi: 10.7498/aps.64.210501
    [18] 李彤, 宋冬冬. 用Matlab研究半功率带宽法[J]. 实验技术与管理, 2019, 26(1): 92-94

    Li T, Song D D. Research on the half-power bandwidth method based on Matlab[J]. Experimental Technology and Management, 2019, 26(1): 92-94 (in Chinese
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  225
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-05
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回