Cat-Paw Pad Bionic Design of Motorcycle Tire Crown
-
摘要: 二轮摩托车轮胎接地面积很小,其接地性能直接影响车辆的动力性、制动性以及操纵稳定性。针对这一问题,对摩托车轮胎胎冠进行了仿生设计。利用WALKWAY压力分布测试系统和3D激光扫描仪对猫爪的动态接地特性及拓扑进行研究,发现猫前爪第三趾枕具有优异的抓地性能。基于第三趾枕横截面拟合曲线采用相似原理对轮胎胎冠进行了仿生设计。利用ABAQUS对轮胎进行静载、驱动、制动及转向接地状态仿真分析。结果表明:不同工况下,仿生轮胎胎冠接地面积增大,接地压力分布均匀性提高,轮胎的抓地及耐磨性能都得到提升。仿生轮胎提高了摩托车的动力性、制动性以及操纵稳定性。Abstract: The contact patch area of the two-wheel motorcycle tire is small, which directly affects the accelerating, braking and handling stability of the motorcycle. To resolve this problem, bionic design method was carried out on the crown of motorcycle tires. The dynamic grounding characteristics and topology of the cat-paw pads were investigated using a pressure-sensitive WALKWAY system and 3D laser scanner. Results of tests manifested that the third toe pad of cat forepaw had excellent grip performance. According to the similar principle, the tire crown was bionic designed based on the cross-section fitting curve of the third toe pad. The grounding characteristics of specimen and bionic designed tire were simulated for static, accelerating, braking and steering working conditions by ABAQUS. Comparison results expressed that bionic designed tire increased the grounding area and improved the uniformity of the pressure distribution under different working conditions, which enhanced the grip performance and wear resistance of the tire. Bionic designed tires enhance the accelerating, braking and handling stability of motorcycle.
-
Key words:
- motorcycle /
- tire crown /
- grounding performance /
- bionic design /
- simulation analysis
-
表 1 仿真分析参数
参数名称 数值 摩托车总质量 M/kg 130 驾驶员质量 m/kg 70 前轮胎胎压 P/kPa 170 前轮胎承载占比/% 30 表 2 轮胎外形尺寸对比
名称 充气断
面宽充气
半径负荷断
面宽负荷
半径下沉量 试验/mm 62 282 66 274 8 仿真/mm 60.64 277.24 65.06 269.69 7.55 误差/% 2.19 1.69 1.42 1.57 5.63 表 3 轮胎接地印痕特征参数对比
名称 接地印痕长度 接地印痕宽度 试验/mm 110 32 仿真/mm 108.21 31.35 误差/% 1.63 2.03 表 4 静载与制动时轮胎接地面积
名称 静载 制动 样胎/cm2 20.882 27.085 仿生轮胎/cm2 21.854 28.023 误差/% 4.7 3.5 表 5 摩托车转向时轮胎接地面积
车体倾斜角/(°) 样胎/cm2 仿生轮胎/cm2 误差/% 10 21.967 23.327 6.2 20 20.904 23.952 14.5 30 22.127 25.447 15.0 -
[1] 王振江, 李赐鹏, 王继忠. 1400dtex/2V1锦纶帘布在摩托车轮胎中的应用[J]. 轮胎工业, 2004, 24(9): 531-534 doi: 10.3969/j.issn.1006-8171.2004.09.007Wang Z J, Li C P, Wang J Z. Application of 1400dtex/2V1 nylon cord in motorcycle tires[J]. Tire Industry, 2004, 24(9): 531-534 (in Chinese doi: 10.3969/j.issn.1006-8171.2004.09.007 [2] 那洪东. 越野赛摩托车轮胎胎面胶[J]. 世界橡胶工业, 2009, 36(4): 24-27 doi: 10.3969/j.issn.1671-8232.2009.04.006Na H D. Tread of motorcycle for motocross raceTread rubber for cross-country motorcycle tires[J]. World Rubber Industry, 2009, 36(4): 24-27 (in Chinese doi: 10.3969/j.issn.1671-8232.2009.04.006 [3] Dolwichai P, Limtragool J. The effect of tire treads shape to stick-slip phenomenon in frictional contact[C]//Proceedings of the 20th Conference of Mechanical Engineering Network of Thailand. Nakhon Ratchasima, Thailand: MENETT, 2006: 18-20 [4] Lee Dong W L, Kim Jong K K, Kim Sung R K, et al. Shape design of a tire contour based on approximation model[J]. Journal of Mechanical Science and Technology, 2011, 25(1): 149-155 doi: 10.1007/s12206-010-1108-7 [5] Sridharan K, Sivaramakrishnan R. Dynamic behavior of tyre tread block[J]. American Journal of Engineering and Applied Sciences, 2012, 5(2): 119-127 doi: 10.3844/ajeassp.2012.119.127 [6] 彭旭东, 郭孔辉, 丁玉华, 等. 橡胶和轮胎的摩擦[J]. 橡胶工业, 2003, 50(9): 562-568 doi: 10.3969/j.issn.1000-890X.2003.09.013Peng X D, Guo K H, Ding Y H, et al. Friction of rubber and tireRubber and tire friction[J]. China Rubber Industry, 2003, 50(9): 562-568 (in Chinese doi: 10.3969/j.issn.1000-890X.2003.09.013 [7] 刘力东. 最新型的摩托车轮胎[J]. 摩托车技术, 1991,(4): 42Liu L D. The newest type for motorcycleThe latest motorcycle tires[J]. Motorcycle Technology, 1991,(4): 42 (in Chinese [8] 李杰, 庄继德, 魏东. 沙漠用仿驼蹄橡胶轮胎的设计与试验研究[J]. 农业工程学报, 1999, 15(2): 32-36 doi: 10.3321/j.issn:1002-6819.1999.02.007Li J, Zhuang J D, Wei D. Design and test of the bionic camel foot rubber tire for desert vehicles[J]. Transcactions of the Chinese Society of Agricultural Engineering, 1999, 15(2): 32-36 (in Chinese doi: 10.3321/j.issn:1002-6819.1999.02.007 [9] 李杰, 庄继德, 魏东, 等. 沙漠仿生轮胎与普通轮胎牵引性能的对比试验[J]. 吉林大学学报, 2006, 36(4): 510-513Li J, Zhuang J D, Wei D, et al. Comparative traction performance tests between bionic camel foot tire and comm on tire[J]. Journal of Jilin University, 2006, 36(4): 510-513 (in Chinese [10] Xu L, Zhou L K, Cheng J. Development status and prospect of bionic tire research[J]. China Rubber Industry, 2018, 65(1): 113-115 [11] 高振明. 免充气蜂巢结构轮胎有限元分析及成型模具设计[D]. 山东青岛: 青岛科技大学, 2015.Gao Z M. The finite element analysis and mould design of non-pneumatic honeycomb structure tireFinite element analysis and mold design of non-inflatable honeycomb tire[D]. Shandong Qingdao: Qingdao University of Science & Technology, 2015 (in Chinese). [12] 王国林, 马银伟, 梁晨, 等. 仿蝗虫脚掌的子午线轮胎胎冠结构设计[J]. 机械工程学报, 2013, 49(12): 131-135 doi: 10.3901/JME.2013.12.131Wang G L, Ma Y W, Liang C, et al. Locust' s pads bionic structural design of radial tire crown[J]. Journal of Mechanical Engineering, 2013, 49(12): 131-135 (in Chinese doi: 10.3901/JME.2013.12.131 [13] 周利坤, 王洪伟. 仿章鱼吸盘式轮胎花纹设计与和有限元分析[J]. 西安理工大学学报, 2013, 29(2): 228-2312 doi: 10.3969/j.issn.1006-4710.2013.02.020Zhou L K, Wang H W. Imitation octopus sucker-type tire tread pattern design and finite element analysis[J]. Journal of Xi' an University of Technology, 2013, 29(2): 228-2312 (in Chinese doi: 10.3969/j.issn.1006-4710.2013.02.020 [14] Martin Guillot M, Maxim Moreau M, d′Marc Andre Anjou M A, et al. Evaluation of osteoarthritis in cats: novel information from a pilot study[J]. Veterinary Surgery, 2012, 41(3): 328-335 [15] Guillot M, Moreau M, Heit M, et al. Characterization of osteoarthritis in cats and meloxicam efficacy using objective chronic pain evaluation tools[J]. The Veterinary Journal, 2013, 196(3): 360-367 doi: 10.1016/j.tvjl.2013.01.009 [16] Alexander R McN, Jayes A S. A dynamic similarity hypothesis for the gaits of quadrupedal mammals[J]. Journal of ZoologyJ. Zool., Lond, 1983, 201(1): 135-152 [17] Zhang Z Q, Yang J L, Yu H. Effect of flexible back on energy absorption during landing in cats: a biomechanical investigation[J]. Journal of Bionic Engineering, 2014, 11(4): 506-516 [18] Mirela R Verdugo M R, Sheila C Rahal S C1, Felipe S Agostinho F S, et al. Kinetic and temporospatial parameters in male and female cats walking over a pressure sensing walkway[J]. BMC Veterinary Research, 2013, 9: 1-7 doi: 10.1186/1746-6148-9-1 [19] 刘亚中. 仿猫科类四足机器人匍匐运动步态规划及控制方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2018.Liu Y Z. Research on creeping motion gait Planning and control methods for imitation cats quadruped robot[D]. Harbin: Harbin University of Science and Technology, 2018 (in Chinese). [20] 李铁才, 李西峙. 相似性和相似原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.Li T C, Li X S. Resemblance and principles of similarity[M]. Harbin: Harbin Institute of Technology Press, 2014 (in Chinese). [21] 张颖文. 轮胎接地特性对振动噪声的影响规律研究[D]. 江苏镇江: 江苏大学, 2017.Zhang Y W. Research on the influence of tire ground characteristic on vibration noise[D]. Jiangsu Zhenjiang: Jiangsu University, 2017 (in Chinese). [22] 马连湘, 任侠. 基于rebar单元的航空轮胎模型建立与分析[J]. 青岛科技大学学报, 2015, 36(3): 318-321Ma L X, Ren X. Aircraft tire modeling and validation based on rebar element[J]. Journal of Qingdao University of Science and Technology, 2015, 36(3): 318-321 (in Chinese [23] 胡竞文. 计及复杂花纹的轮胎胎面磨耗预测[D]. 长春: 吉林大学, 2017.Hu J W. Tire tread wear prediction considering the complex pattern[D]. Changchun: Jilin University, 2017 (in Chinese). [24] 李钊, 李孑然, 夏源明. 滚动轮胎接触摩擦行为的实试验研究与数值分析[J]. 上海交通大学学报, 2013, 47(5): 817-821Li Z, Li J R, Xia Y M. Experimental and numerical study of frictional contact behavior of rolling tireExperimental study and numerical analysis of friction contact behavior of rolling tire[J]. Journal of Shanghai Jiaotong University, 2013, 47(5): 817-821 (in Chinese [25] 王国林, 张娉, 周海超, 等. 胎面变形与刚度对轮胎抓地性能的影响研究[J]. 机械工程学报, 2017, 53(10): 108-115 doi: 10.3901/JME.2017.10.108Wang G L, Zhang P, Zhou H C, et al. Effect of tread deformation and stiffness on road holding performance[J]. Journal of Mechanical Engineering, 2017, 53(10): 108-115 (in Chinese doi: 10.3901/JME.2017.10.108 -