留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

归一化变尺度随机共振的刀具状态监测

姜增辉 谢峰 王海宁

姜增辉,谢峰,王海宁. 归一化变尺度随机共振的刀具状态监测[J]. 机械科学与技术,2020,39(10):1520-1525 doi: 10.13433/j.cnki.1003-8728.20190266
引用本文: 姜增辉,谢峰,王海宁. 归一化变尺度随机共振的刀具状态监测[J]. 机械科学与技术,2020,39(10):1520-1525 doi: 10.13433/j.cnki.1003-8728.20190266
Jiang Zenghui, Xie Feng, Wang Haining. Condition Monitoring of Tools with Normalized Variable-scale Stochastic Resonance[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1520-1525. doi: 10.13433/j.cnki.1003-8728.20190266
Citation: Jiang Zenghui, Xie Feng, Wang Haining. Condition Monitoring of Tools with Normalized Variable-scale Stochastic Resonance[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1520-1525. doi: 10.13433/j.cnki.1003-8728.20190266

归一化变尺度随机共振的刀具状态监测

doi: 10.13433/j.cnki.1003-8728.20190266
基金项目: 国家自然科学基金项目(51975003)与安徽省学术和技术带头人科研项目(2017D135)资助
详细信息
    作者简介:

    姜增辉(1996−),硕士研究生,研究方向为机械故障诊断,检测技术与自动化装置,941078044@qq.com

    通讯作者:

    谢峰,教授,硕士生导师,jeexf199@163.com

  • 中图分类号: TG115.5+8;TH117.1

Condition Monitoring of Tools with Normalized Variable-scale Stochastic Resonance

  • 摘要: 针对传统时频域检测方法不能有效检测出刀具急剧磨损初期微弱特征信息的问题,提出一种归一化变尺度随机共振监测刀具状态的新方法。该方法通过换元将经典双稳态随机共振系统模型变化为归一化形式,变化之后的随机共振(Stochastic resonance,SR)方法把混合信号进行放大,使得SR方法适用于大参数系统,通过仿真验证了该方法的可行性。并使用该方法对刀具进行实时监测,成功检测出了以主轴基频和立铣刀转频为特征的刀具磨损信息,表明了归一化变尺度随机共振在刀具状态监测中的实用性和有效性。
  • 图  1  输入信号(大参数)时域图及频谱图

    图  2  输出信号(大参数)时域图及频谱图

    图  3  实验装置图

    图  4  振动信号分析流程图

    图  5  输入加噪信号放大120倍时域图

    图  6  主轴基频特征频率

    图  7  输入加噪信号放大240倍时域图

    图  8  立铣刀转频特征频率

  • [1] 任泽宇. 刀具磨损监测技术的研究现状及发展趋势[J]. 中国设备工程, 2019,(2): 76-77

    Ren Z Y. Research status and development trend of tool wear monitoring technology[J]. China Plant Engineering, 2019,(2): 76-77 (in Chinese
    [2] 郭景超, 李安海. 刀具磨损状态监测技术研究进展[J]. 工具技术, 2019, 53(5): 3-13 doi: 10.3969/j.issn.1000-7008.2019.05.001

    Guo J C, Li A H. Advances in monitoring technology of tool wear condition[J]. Tool Engineering, 2019, 53(5): 3-13 (in Chinese doi: 10.3969/j.issn.1000-7008.2019.05.001
    [3] 王国锋, 李志猛, 董毅. 刀具状态智能监测研究进展[J]. 航空制造技术, 2018, 61(6): 16-23

    Wang G F, Li Z M, Dong Y. Recent advances in intelligent monitoring of cutting tool condition[J]. Aeronautical Manufacturing Technology, 2018, 61(6): 16-23 (in Chinese
    [4] 崔云先, 张博文, 刘义, 等. 智能切削刀具发展现状综述[J]. 大连交通大学学报, 2016, 37(6): 10-14

    Cui Y X, Zhang B W, Liu Y, et al. Development status summary of smart cutting tool[J]. Journal of Dalian Jiaotong University, 2016, 37(6): 10-14 (in Chinese
    [5] Bi H H, Lei Y M, Han Y Y. Stochastic resonance across bifurcations in an asymmetric system[J]. Physica A: Statistical Mechanics and its Applications, 2019, 525: 1296-1312 doi: 10.1016/j.physa.2019.03.109
    [6] Sun Z K, Dang P N, Xu W. Detecting and measuring stochastic resonance in fractional-order systems via statistical complexity[J]. Chaos, Solitons & Fractals, 2019, 125: 34-40
    [7] 王海宁, 谢峰, 李楠, 等. 基于功率谱特征分析的立铣刀磨损实时监测方法[J]. 工具技术, 2019, 53(3): 123-126

    Wang H N, Xie F, Li N, et al. Research on real-time monitoring method of milling cutter's wear based on power spectrum feature analysis[J]. Tool Engineering, 2019, 53(3): 123-126 (in Chinese
    [8] 杨定新, 胡茑庆. 基于随机共振电路模拟的微弱周期信号检测[J]. 电路与系统学报, 2004, 9(6): 135-138

    Yang D X, Hu N Q. Detecting weak signal based on analog simulating of stochastic resonance[J]. Journal of Circuits and Systems, 2004, 9(6): 135-138 (in Chinese
    [9] 黄婷婷, 于红莉. 双稳态共振技术在高速切削刀具早期故障诊断中的应用[J]. 金属加工(冷加工), 2015(21): 58-59

    Huang T T, Yu H L. Application of Bistable resonance technology in early fault diagnosis of high speed cutting tools[J]. Metal Working (Metal Cutting), 2015(21): 58-59 (in Chinese
    [10] Lu S L, He Q B, Zhang H B, et al. Note: signal amplification and filtering with a Tristable stochastic resonance cantilever[J]. Review of Scientific Instruments, 2013, 84(2): 026110 doi: 10.1063/1.4792603
    [11] Lu S L, He Q B, Kong F R. Stochastic resonance with woods-Saxon potential for rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2014, 45(2): 488-503 doi: 10.1016/j.ymssp.2013.12.004
    [12] Lu S L, He Q B, Zhang H B, et al. Enhanced rotating machine fault diagnosis based on time-delayed feedback stochastic resonance[J]. Journal of Vibration and Acoustics, 2015, 137(5): 051008 doi: 10.1115/1.4030346
    [13] Lu S L, He Q B, Kong F R. Effects of underdamped step-varying second-order stochastic resonance for weak signal detection[J]. Digital Signal Processing, 2015, 36: 93-103 doi: 10.1016/j.dsp.2014.09.014
    [14] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981, 14(11): 453-457 doi: 10.1088/0305-4470/14/11/006
    [15] 冷永刚, 王太勇, 李瑞欣, 等. 变尺度随机共振用于电机故障的监测诊断[J]. 中国电机工程学报, 2003, 23(11): 111-115 doi: 10.3321/j.issn:0258-8013.2003.11.023

    Leng Y G, Wang T Y, Li R X, et al. Scale transformation stochastic resonance for the monitoring and diagnosis of electromotor faults[J]. Proceedings of the CSEE, 2003, 23(11): 111-115 (in Chinese doi: 10.3321/j.issn:0258-8013.2003.11.023
    [16] 冷永刚. 大信号变尺度随机共振的机理分析及其工程应用研究[D]. 天津: 天津大学, 2004.

    Leng Y G. Mechanism analysis of the large signal scale-transformation stochastic resonance and its engineering application study[D]. Tianjin: Tianjin University, 2004 (in Chinese).
    [17] 张仲海. 基于随机共振的滚动轴承微弱特征检测技术应用研究[D]. 天津: 天津大学, 2012.

    Zhang Z H. Research on weak signal detection of rolling bearings based on stochastic resonance[D]. Tianjin: Tianjin University, 2012 (in Chinese).
    [18] Li J M, Li M, Zhang J F, et al. Frequency-shift multiscale noise tuning stochastic resonance method for fault diagnosis of generator bearing in wind turbine[J]. Measurement, 2019, 133: 421-432 doi: 10.1016/j.measurement.2018.10.054
    [19] 陆思良. 基于随机共振的微弱信号检测模型及应用研究[D]. 合肥: 中国科学技术大学, 2015.

    Lu S L. Models and applications of stochastic resonance-based weak signal detection[D]. Hefei: University of Science and Technology of China, 2015 (in Chinese).
    [20] 张金凤, 李继猛, 杨莹, 等. 基于改进耦合增强随机共振的滚动轴承故障诊断[J]. 计量学报, 2019, 40(3): 385-391 doi: 10.3969/j.issn.1000-1158.2019.03.06

    Zhang J F, Li J M, Yang Y, et al. Rolling bearing fault diagnosis based on improved coupling-enhanced stochastic resonance[J]. Acta Metrologica Sinica, 2019, 40(3): 385-391 (in Chinese doi: 10.3969/j.issn.1000-1158.2019.03.06
    [21] 许梦颖, 王红军. 基于FOA的自适应随机共振滚动轴承故障检测[J]. 组合机床与自动化加工技术, 2019, (2): 94-96, 99.

    Xu M Y, Wang H J. FOA-based adaptive stochastic resonance rolling bearing fault detection[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019, (2): 94-96, 99 (in Chinese).
    [22] 张刚, 曹莉, 贺利芳, 等. 指数型随机共振微弱振动信号检测方法[J]. 振动与冲击, 2019, 38(9): 53-61

    Zhang G, Cao L, He L F, et al. Weak vibration signal detection method for exponential stochastic resonance systems[J]. Journal of Vibration and Shock, 2019, 38(9): 53-61 (in Chinese
  • 加载中
图(8)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  46
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 网络出版日期:  2020-11-07
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回